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Abstract: In recent years, scenario-based modeling has been proposed to help mitigate some of the 

underlying difficulties in modeling complex reactive systems, by allowing modelers to specify 
system behavior in a way that is intuitive and directly executable. This modeling approach 
simplifies the specification of systems that include events occurring in distinct system 
components. However, when these system components are physically distributed, executing 
the scenario-based model requires inter-component coordination that may negatively affect 
system performance or robustness. We describe a technique that aims to reduce the amount 
of joint eventselection decisions that require coordination and synchronization among 
distributed system components. The technique calls for replicating the entire scenario-based 
executable specification in each of the components, and then transforming it in a 
component-specific manner that induces the required differences in execution while 
reducing synchronization requirements. In addition to advantages in streamlining design and 
improving performance, our approach captures the fact that in certain “smart” distributed 
systems it is often required that components know what rules govern the behavior of other 
components. Our evaluation of the technique shows promising results. 

1 INTRODUCTION 

With modern reactive systems becoming both 
pervasive and highly complex, modeling them is 
becoming increasingly difficult. Modelers are forced 
to spend ever-larger amounts of time and effort in 
order to reconcile two goals: (1) accurately describe 
complex real-world systems and phenomena; and (2) 
do so using models that are simple, comprehensible 
and intuitive to humans. These two goals are often 
conflicting: it is difficult to describe the properties of 
such systems accurately while at the same time 
avoiding clutter, which makes it harder for humans 
to comprehend the resulting models. 

Over the recent two decades, an approach 
termed Scenario-Based Modeling (Damm and Harel, 
2001) has emerged as an attempt at tackling these 
difficulties. The idea at its core is to model systems in 
a way that is more intuitive and understandable to 

humans — by defining scenarios that describe 
desirable or undesirable system behavior — and 
then to automatically combine these scenarios in a 
way that produces a cohesive, global model. 
Appropriate scenario-based approaches and tools 
have executable semantics, thus helping to 
streamline the deployment of scenario-based 
models in the real world. 

A scenario-based approach has been claimed to 
be more intuitive for humans to understand (see, 
e.g., (Gordon et al., 2012)). It allows the modeler to 
specify different but possibly interrelated behavioral 
aspects as separate scenarios, reducing the inherent 
complexities of the modeling process. However, by 
default and as explained later, a scenario-based 
execution requires that all scenarios synchronize at 
every step for the purpose of joint event selection. 
When executing scenario-based specifications in a 
distributed architecture, inter-scenario 



synchronization induces inter-component 
synchronization, which may be undesirable in real-
world systems, where communication is often costly, 
slow, or unreliable. This difficulty constitutes a 
serious barrier when considering the use of scenario-
based modeling in a real-world setting. 

We seek to address this problem by proposing an 
automated technique for the transformation of 
classical, highly synchronous scenario-based models 
into equivalent models with a greatly reduced level 
of synchronization. The basis of our approach is a 
rather straightforward replicate-and-project 
technique but with some subtle facets: we replicate 
the full set of scenarios in all the distributed 
components but project them in a component-
specific fashion, so that each component is made 
responsible only for the actions that fall within its the 
local scope. Other, external actions are assumed to 
be performed by projections running on other 
components. 

In order to make the replicated-and-projected 
scenarios behave the same as their non-distributed 
version, the distributed components broadcast the 
local actions they perform to all other components. 
At times a situation arises that forces some of the 
distributed components to mutually agree on the 
next action to perform. This might happen either due 
to an exclusive choice among multiple enabled 
actions (i.e., events), or due to communication 
latency that might result in different orders of 
broadcast actions as observed by different 
components. An important part of the work in this 
paper is dedicated to classifying these cases, 
presenting them when they arise, and proposing 
practical approaches to resolving them. 

This process is handled automatically by our 
distribution algorithm and infrastructure, and, as we 
discuss and demonstrate later, it aims to generate a 
distributed model that has as few synchronization 
points as possible. 

The motivation behind the approach is to retain 
the modeler’s ability to use classical scenario-based 
modeling, with its associated advantages, but to be 
able to then transform the model into a version that 
is more amenable to distribution and deployment in 
the real world. We prove that, under certain 
restrictions, our proposed transformation preserves 
the behavior of the original model. This gives rise to 
a methodology for developing distributed scenario-
based models, where one models a distributed 
system as if it were centralized, and the model is then 

automatically adjusted to more accurately simulate 
(or even run in) its final setting. 

Automatic distribution of general models (i.e., 
not just scenario-based) or synthesizing distributed 
models from specifications have been long-standing 
goals of the software modeling and engineering 
community. Specifically, distributed synthesis is 
known to be undecidable in some cases (Stefanescu 
et al., 2003). We contribute to this effort by studying 
the problem in the context of scenario-based 
modeling, and leveraging some of the paradigm’s 
properties of naturalness and relative simplicity. 
However, difficulties nevertheless arise. We classify 
and describe them, and explain how they can still be 
addressed. Our experimental results indicate that 
the technique holds much potential for becoming 
practical. 

The rest of the paper is organized as follows. In 
Section 2 we provide a brief introduction to the 
scenario-based approach. In Section 3 we introduce 
the notion of a distributed scenario-based model, 
and show how it can be automatically generated 
from a non-distributed model by our replicate-and-
project technique. The correctness of this 
transformation is proved in Appendix A. Section 4 
describes how the approach can be applied when 
different components in the model operate on 
different time scales. An example implementation 
and its evaluation appear in Section 5, followed by a 
discussion in Section 6 of our ongoing and planned 
future work. In section 7, we discuss related work 
that has been carried out on automatic distribution, 
both in the general setting and in the context of 
scenario-based modeling. We conclude in Section 8. 

2 BACKGROUND: SCENARIO-BASED 

MODELING 

Scenario-based modeling was first presented via 
the Live Sequence Charts (LSC) formalism (Damm and 
Harel, 2001; Harel and Marelly, 2003a). The 
approach, aimed at developing executable models of 
reactive systems, shifts the focus from describing 
individual objects of the system into describing 
individual behaviors of the system. The basic building 
block in this approach is the scenario: an artifact that 
describes a single behavior of the system, possibly 
involving multiple different components thereof. 
Scenarios can describe either desirable behaviors of 
the system or undesirable ones. A set of user-defined 



scenarios can then be interwoven into one cohesive, 
potentially complex, system behavior. 

Several facets of scenario-based modeling have 
been discussed and handled in different ways: 
scenarios can be represented graphically, as in the 
original LSC approach, or textually (Harel et al., 
2012b; Greenyer et al., 2016a); scenario-based 
models can be executed by na¨ıve play-out (Harel 
and Marelly, 2003b), by smart playout with 
lookahead (Harel et al., 2002) or via controller 
synthesis (see, e.g., (Harel and Segall, 2011; Greenyer 
et al., 2016a)). The modeling process can be 
augmented by a variety of automated verification, 
synthesis and repair tools (Harel et al., 2012a; Harel 
et al., 2013b). However, research has shown that the 
basic principles at the core of the approach, shared 
by all flavors, are naturalness and incrementality — 
in the sense that scenario-based modeling is easy to 
learn and understand, and that it facilitates the 
incremental development of complex models 
(Gordon et al., 2012; Alexandron et al., 2014). These 
properties stem from the fact that modeling is done 
in a way similar to the way humans explain complex 
phenomena to each other, detailing the various 
steps and behaviors one at a time. 

For the remainder of the paper, we focus on a 
particularly simple variant of scenario-based 
modeling, called behavioral programming (BP) (Harel 
et al., 2012b). Despite its simplicity, BP has been 
successfully used in developing medium scale 
projects (Harel and Katz, 2014; Harel et al., 2016), 
and is also known to be particularly amenable to 
automatic analysis tools (Harel et al., 2015c). These 
properties render BP a good candidate for 
demonstrating our approach. The rest of this section 
is dedicated to demonstrating and formally defining 
BP. 

In BP, a model is a set of scenarios, and an 
execution is a sequence of points, in which all the 
scenarios synchronize. At every behavioral-
synchronization point (abbreviated bSync) each 
scenario pauses and declares events that it requests 
and events that it blocks. Intuitively, these two sets 
encode desirable system behaviors (requested 
events) and undesirable ones (blocked events). 
Scenarios can also declare events that they passively 
wait-for — stating that they wish to be notified if and 
when these events occur. The scenarios do not 
communicate their event declarations directly to 
each other; rather, all event declarations are 
collected by a central event selection mechanism 
(ESM). Then, at every synchronization point during 

execution, the ESM selects (triggers) an event that is 
requested by some scenario and not blocked by any 
scenario. Every scenario that requested or waited for 
the triggered event is then informed, and can update 
its internal state, proceeding to its next 
synchronization point. Fig. 1 (borrowed from (Harel 
et al., 2016)) demonstrates a simple behavioral 
model. 

Formally, BP’s semantics are defined as follows. A 
scenario, also referred to in the literature as a 
behavior thread (abbreviated b-thread), is defined as 
a tuple 

BT = hQ,q0,δ,R,Bi 

and with respect to a global set of events Σ. The 
components of the tuple are: a set of states Q 
representing synchronization points; an initial state 
q0 ∈ Q; a deterministic transition function δ : Q ×Σ → 
Q that specifies how the thread changes states in 
response to the triggering of events; and, two 

labeling functions, R : Q → P(Σ) and B : Q → P(Σ), that 

specify the events that the thread requests (R) and 
blocks (B) in a given synchronization point. 

A behavioral model M is defined as a collection of 
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Figure 1: Incrementally modeling a controller for the water level in a tub. 

The tub has hot and cold water sources, and either may be turned on in 

order to increase/reduce the water temperature. Each scenario is given as 

a transition system, where the nodes represent synchronization points. The 

scenario ADDHOTWATER repeatedly waits for WATERLOW events and requests 

three times the event ADDHOT. Scenario ADDCOLDWATER performs a similar 

action with the event ADDCOLD, capturing a separate requirement, which 

was introduced when adding three water quantities for every sensor 

reading proved to be insufficient. When a model with scenarios 

ADDHOTWATER and ADDCOLDWATER is executed, the three ADDHOT events and 

three ADDCOLD events may be triggered in any order. When a new 

requirement is introduced, to the effect that water temperature be kept 

stable, the scenario 
STABILITY is added, enforcing the interleaving of ADDHOT and ADDCOLD events 

by using event blocking. The execution trace of the resulting model is 

depicted in the event log. 

 
 
 
 

 
    

 
    

 
    

 
    



b-threads 

M = {BT1,...,BTn}, all of them with 

respect to the same event set Σ. Denoting the 

individual b-threads as 

BTi , 

an execution of model M starts at the initial state 

. Then, at every state hq1,...,qni, the model 
progresses to the next state hq¯1,...,q¯ni by: 

1. selecting an event e ∈ Σ that is enabled, i.e. 
requested by at least one b-thread and blocked 
by none: 

! 

e 

2. triggering event e and advancing the individual 
bthreads according to their transition systems: 

 ∀i, q¯i = δi(qi,e) 

For reactive systems, executions are often infinite — 
although BP can also be used to model systems with 
finite executions. 

The BP definitions above are abstract, and make 
it easier to reason about behavioral models. 
However, for practical purposes, the BP modeling 
principles have been integrated into a variety of high-
level languages such as Java, C++, Erlang and 
Javascript (see the BP website at http://www.b-
prog.org/). These frameworks allow engineers to 
integrate reactive scenarios into their favorite 
programming or modeling environments. Further, 
the same principles as underly BP, play a significant 
role in several popular modeling frameworks such as 
publish-subscribe architectures (Eugster et al., 2003) 
and supervisory control (Ramadge and Wonham, 
1987). 

3 DISTRIBUTION VIA REPLICATE-AND-

PROJECT 

The execution of a classical BP model, as described in 
Section 2, is highly synchronized and centralized by 
nature: at every step along the execution, the ESM 
gathers the sets of requested and blocked events 
from each individual b-thread, selects an enabled 
event, and then broadcasts it back to the bthreads. 
While this underlies some of the benefits of BP (Harel 

et al., 2012b), it also results in limited scalability and 
distributability. Excessive synchronization tends to 
add unnecessary complexity, impact performance, 
and create inter-component dependencies which 
reduce robustness. For example, having a scenario 
wait for an event that is supposed to be requested by 
a scenario running on a separate, failed component 
might result in a deadlock. Furthermore, 
synchronization forces b-threads to execute in 
lockstep, which can be undesirable if they are to 
model phenomena that occur at different 
timescales. 

In this section we propose a distribution process 
that transforms a centralized (undistributed) 
behavioral model into a distributed one: it generates 
multiple component models — subsets of the 
original, centralized behavioral model — each 
designed to be run on a separate machine. When run 
simultaneously, however, these component models 
mimic the behavior of the original system, but 
require much less synchronization. Below we 
elaborate on the abstract concepts and formal 
definitions of the proposed process. An example 
showing how these concepts apply in the setting of a 
particular distributed application appears in Section 
5. 

Each of the component models produced by our 
distribution process is a behavioral model in its own 
right, intended to be responsible for a certain subset 
of the events of the original model, which are 
uniquely owned and controlled by it — meaning that 
no other component can request or block them. The 
component models are intended to be executed in 
an asynchronous manner in a distributed system, 
resulting in a natural, robust and simple extension of 
the scenariobased paradigm. 

The main difficulty in this approach is to ensure 
that the distributed components behave in the same 
way as the original model although they are not 
synchronized at every step. In order to resolve this 
difficulty, the crux of our distribution process is the 
replication of the entire set of original scenarios in 
each of the distributed components, granting the 
components the ability to follow what other 
components are doing, but avoiding synchronization 
when possible. By default, every component runs a 
local ESM, which performs local event selection 
without synchronizing with other components. 
However, at every synchronization point where 
multiple components have to agree on the particular 
event to select, the ESMs of these components do 
synchronize. 



The communication between components is 
asynchronous, and they notify each other about 
chosen events as they progress through the 
scenarios. Keeping track of each scenario state is 
simply a matter of listening to incoming broadcasts 
and updating the current state. 

The classical problem of multicasting or 
broadcasting a message efficiently in a distributed 
network is well studied (e.g. (Miller and Poellabauer, 
2009) presents an approach for minimum-energy-
broadcasts in distributed networks with limited 
resources and unknown topology), however it is 
beyond the scope of this paper. For simplicity we 
assume that the cost of those boradcasts and 
bookkeeping is small. Note that even in systems with 
a large number of components and scenarios, a 
component often needs to keep track of only a small 
subset of the other components; for example, an 
autonomous car considers other cars only when they 
are in its immediate vicinity, and does not keep track 
of all vehicles in the world. Still, this dynamic 
registering and unregistering of components is also 
beyond the scope of this paper and is left for future 
work. 

In the remainder of the section we formalize 
these notions and the distribution process itself. 

3.1 Event Components 

Let M denote a behavioral model over event set Σ. 
An event component E is a subset of the global event 
set, E ⊆ Σ. An event e ∈ E is said to be a local event of 
E; otherwise, if e ∈/ E then e is external to E. 

A collection of event components {E1,...,Ek} is an 

event separation of . An event 
separation is strict if it also forms a partition of Σ: 

 ∀ i, j, 1 ≤ i 6= j ≤ k =⇒ Ei ∩Ej = 0/. 

In the remainder of the paper we will only deal with 
strict event separations and assume that they are 
provided by the user to reflect the physical layout of 
the system and the responsibility of each distributed 
component. Automated ways of generating an event 
separation are discussed in section 7. 

3.2 Component Models 

Given a behavioral model M = {BT1,...,BTn}, each 
event component E gives rise to a component model 
C, in the following way. C is the behavioral model 

C , obtained by projecting each of 
the original b-threads along event component E, 
denoted C = project(M,E). Formally, if BTi = 

then 

BTEi  

The state set Qi, initial state qi
0 and transition 

function δi are unchanged; whereas the labeling 

functions Ri and Bi are changed into: 

Ri
E(q) = Ri(q)∩E 

Bi
E(q) = Bi(q)∩E 

Intuitively, the projected b-threads are modified to 
only request and block events that are in E; but 
because δi is unchanged they continue to respond in 
the same way to the triggering of all events, including 
those not in E. Consequently, requested external 
events effectively become waited-for events. 

Now, given a strict event separation {E1,...,Ek}, our 
distribution process entails projecting the model M 
along each of the event components, producing a set 
of component models {C1,...,Ck} such that 

 ∀ 1 ≤ i ≤ k, Ci = project(M,Ei) 

By treating each component Ci as a separate 
behavioral model that performs event selection 
locally, the components can be run independently 
and in a distributed manner. The following useful 
corollary is a direct conclusion that arises from the 
definition of the distribution process. 

Corollary 3.1. An event e ∈ Σ can be selected by one 
component only. 

Proof. {E1,...,Ek} is a strict event separation, hence 
there is only one value of i such that e ∈ Ei. By 
definition only Ci can request e. Therefore only Ci can 

select e.  

In order to keep the execution consistent 
between components, occasionally two or more 
components may need to synchronize, as we discuss 
in the next section. 

3.3 Executing Component Models 

The following definition is useful in identifying the 
points during the execution in which multiple 
components need to synchronize: 



Definition 3.1. Observe a component model Cj = 

project(M,Ej), a b-thread BTi and some state q ∈ Qi. 

We say that BTi is controlled by Cj at state q if one or 

more of Ej’s local events is requested or waited-for in 

q; i.e., if ∃e ∈ Ej such that δi(q,e) 6= q or e ∈ Ri(q). 

Whenever a scenario reaches a state that is 
controlled by multiple components, these 
components synchronize with each other and 
together select an event for triggering, while the 
other components only track the progress passively 
and need not synchronize. We refer to these 
situations, where at some state a single b-thread is 
controlled by multiple components, as inter-
component decision points. For example, an inter-
component decision point occurs when two robot-
controlled cars (each operated by a separate 
component) arrive at an intersection exactly at the 
same time and attempt to decide on which car 
should yield to the other. Because the scenario 
controlling the intersection waits for movement 
events that are controlled by both components, the 
two car components are forced to synchronize, 
mutually agree on a single triggered event, and then 
broadcast it — informing all interested threads, in all 
components, about the selection. 

In order to support this sort of distributed 
execution, each of the component models runs an 
ESM that is slightly different from the one described 
in Section 2. Specifically, the ESM from Section 2 is a 
tool for picking one event for triggering from among 
the set of all enabled events. In contrast, each of our 
distributed ESMs is capable of broadcasting events 
that were triggered locally by “its” component to all 
other model components, and, dually, to process 
external events broadcast by the ESMs of other 
components. 

The distributed version of the ESM operates as 
follows: 

• When a local event is triggered by a component’s 
ESM, that event is broadcast to all other running 
components. 

• When a component’s ESM receives an event e 
that was broadcast by another component’s 
ESM, e is added to a dedicated event queue 
within the ESM. 

• When choosing an event for triggering, an ESM 
first checks its event queue for external events. If 
the queue is not empty, it pops an event from the 
queue and declares it to be the triggered event 

to its local b-threads. If the queue has multiple 
stored events, this process repeats until the 
queue becomes empty. Once the queue is empty 
the ESM resumes normal event selection, as 
described in Section 2: it selects a local event that 
is requested and not blocked. 

• Inter-component synchronizations: Whenever a 
b-thread arrives at a state that requires 
synchronization with one or more other 
components, the ESMs of these threads 
synchronize and mutually agree upon a triggered 
event. This event is then broadcast to all ESMs. 

Event selection is performed precisely as in the case 
of a centralized ESM, by choosing a requested but 
not blocked event. 

The actual inter-component decision between 
multiple ESMs can be performed, e.g., via a 
distributed leader election protocol (Ghosh and 
Gupta, 1996). Once a specific ESM has been selected 
as the leader, it chooses the next triggered event 
based on the requested and blocked events in the 
current state. 

We observe that deadlocks need to be treated 
differently in the distributed case than in the 
centralized case. According to the semantics given in 
Section 2, the system deadlocks if the ESM 
determines at some point that there all requested 
events are blocked, so that none can be selected. 
However, in the distributed case this is no longer the 
case if one of the local bthreads has an external 
waited-for event, since there is yet hope that 
another component might broadcast this event later. 
Thus, the component is stalled until such a broadcast 
arrives. 

3.4 Equivalence to Centralized Executions 

Given a centralized behavioral model M over an 
event set Σ and a strict event separation {E1,...,Ek}, our 
distribution process produces a set of component 
models {C1,...,Ck}. These components have the 
following property: 

Lemma 3.1. Assuming that communication between 
component models is instantaneous, the set of all 
possible executions (the language) of M is identical 
to the set of all possible executions produced by the 
component models {C1,...,Ck} when run jointly in a 
distributed fashion. 

This lemma, which is the main proven result of 
this work, is of practical importance, as it implies that 
the distribution process will not cause the model to 



behave in unexpected ways (note that this lemma is 
about the collection of all runs, and does not claim 
that if the distributed and centralized models are run 
side-by-side, they will produce the same run). In 
other words, one can study and analyze the 
centralized version of the model (which is far easier 
for humans to grasp and comprehend, and for tools 
to analyze) and the conclusions will apply to the 
distributed setting too. We will discuss some of the 
implications of this result in Section 6. The lemma is 
proved in Appendix A. 

At first glance, the requirement that 
communication be instantaneous might seem 
unrealistic. However, in practice we make no such 
assumptions and our technique can also be used 
where communication is delayed due to various 
reasons, as discussed in the next section. 

3.5 Dealing with Latency 

Once we relax our assumption that communication 
latency and external-event processing is 
instantaneous, the distributed system’s behavior 
may diverge from that of the centralized case in a 
number of ways. 

1. Inter-component decisions: In section 3.3 we 
described how multiple components may need to 
synchronize in order to proceed in a state that 
they all control. As a simple example, consider a 
model with a single b-thread and a single 
synchronization point, in which two events, a and 
b, are simultaneously requested. Clearly, 
executing this model will result in either a or b 
getting triggered. 

Now, suppose that we distribute this program 
with the strict event separation {E1 = {a},E2 = {b}}. 
The projection process results in two component 
models, C1 and C2. In C1 the projected single 
thread will request a while waiting for b, and in 
C2 the projected thread will request b while 
waiting for a. 

In a no-latency situation, this is acceptable: no 
matter which component performs event 
selection first, it will notify the second 
component immediately, resulting in either a or 
b getting triggered, but not both. However, if 
communication is not immediate, it is possible 
that component C1 will trigger a and component 
C2 will trigger b, resulting in a behavior that the 
original model did not have. 

As each component knows at each state which 
components control the b-thread, the solution is 
simply to synchronize with them. 
Intercomponent decisions are handled entirely 
by our distribution framework as outlined in 
Section 3.3 above. 

2. Maintaining order: It is possible for broadcast 
events to arrive at different components in 
different orders, resulting in these components 
having different views of the execution. 
Consequently, projections of the same b-thread 
within these components may be in different 
states. As with inter-component decisions, this 
would create inconsistent behavior. 

Observe that this situation can only arise at system 
states where event-selection decisions that differ 

across components result in transitions to different 
successor states. Detecting these instances can be 

performed offline by a model checker, or by an 
online look-ahead mechanism. Once the potentially 

problematic states are identified, the problem can 
be circumvented by having the distributed 

components treat them as inter-component 
decision points, and perform inter-component 

synchronization. Note that we assume that between 
any two components, communications arrive 

ordered correctly. This can be guaranteed by TCP or 
PGM, but not by protocols that allow out-oforder 

delivery, such as UDP. 

Another proposed solution is to synchronize the 
clocks of the different components, and add a 
time-stamp to each selected event. By delaying 
the announcement of received external events 
and selected local events to a component’s b-
threads, the ESM can interweave the events in 
the correct order. 

3. Accommodating delays: Consider the following 
example: a robot-driven car is approaching an 
intersection, and in order to avoid collisions it 
must communicate with other cars. However, if 
the communication happens just before entering 
the intersection, any delay or missed messages 
could cause an accident. 

In order to avoid this kind of issues, programs 
designed for distribution should employ design 
patterns and methods that take a realistic 
communication delay into account. E.g., 
checking for other cars early, while approaching 
the intersection, rather than, say, relying on 
scenarios to block all events of cars entering the 
intersection following the occurrence of an event 



reporting that one car already entered that 
intersection. We feel that this is a valid 
assumption in designing distributed systems and 
does not contradict or make redundant the 
advantages of BP. 

4 PER-COMPONENT TIMESCALES 

As explained earlier, in a centralized behavioral 
model, all b-threads must synchronize in order for 
the ESM to announce the selected event. The 
bthread that takes the longest to reach its 
synchronization point (e.g., because it performs slow 
local calculations or writes to a file) forces the rest of 
the bthreads to wait until it synchronizes. This 
lockstep execution thus results in the slowest b-
thread dictating the timescale for the whole system. 
This is a common issue in behavioral models that 
involve multiple scenarios operating on different 
timescales (see, e.g., (Harel et al., 2015a)), and it also 
applies to our distributed variant of BP: for example, 
a slower component might experience delays before 
broadcasting events that a faster component 
depends on, forcing the latter to wait. Furthermore, 
external events can “pile up”, increasing the 
processing time of future event selections and 
delaying the selection of potentially crucial events. 

In this section we discuss how to allow the 
generated components to operate efficiently on 
different timescales. 

Previous work (Harel et al., 2015a) has tackled 
this difficulty in a variety of ways. One approach in 
(Harel et al., 2015a) introduced an eager execution 
mechanism for behavioral models. This technique 
lessened the severity of the problem by sometimes 
allowing the ESM to trigger an event even when 
some of the b-threads have not yet synchronized. 
Our distribution technique lends itself naturally to 
this kind of idea, because within a given component, 
we know that b-threads controlled by other 
components, which have not synchonized yet, 
cannot block local requested events. Thus, by 
applying a method similar to eager execution, the 
ESM does not have to wait for b-threads which wait 
only for external events (such bthreads may be in the 
original specification, or they may be the projected 
version of b-threads with event requests changed to 
waiting for events). 

In our distributed setting, eager execution can be 
applied as follows. Given a behavioral model M = 

{BT1,...,BTn} and its distributed component models 
{C1,...,Ck}, let q∈Qi be a state in which b-thread BTi is 
not controlled by component Cj. Observe BTj

i, i.e., the 
copy of BTi that is running in component Cj. Because 
BTj

i is not controlled by Cj, it does not request or wait 
for any local events and must be waiting for an 
external event e controlled by some other 
component Cm. In other words, until such time as e is 
triggered by Cm, thread BTj

i will not affect local event 
selection in component Cj. In such situations we 
propose to temporarily detach thread BTj

i from its 
local ESM, effectively allowing event selection in 
component Cj without considering BTj

i. This allows 
component Cj to operate in its own pace, while BTj

i 

can be regarded as temporarily operating in the 
same time scale as Cm. Whenever e is finally triggered 
and BTj

i reaches a new state ¯q in which it is 
controlled byCj, it is reattached to the local ESM. This 
technique readily enables different components to 
simultaneously operate at different timescales. 

To support eager execution within our distributed 
framework, the external event queue within each 

component model needs to be decoupled from the 
distributed ESM. Instead, each b-thread in the 

component receives its own external-event queue, 
and at each synchronization point pops all external 

events and selects them one at a time. The changes 
in the BP execution engine are summarized as 

follows: 

• Each b-thread should flag itself as synchronized 
or unsynchronized at each bSync, depending on 
the state. 

• A separate event queue is created in each b-
thread, thus allowing b-threads to process 
external events independently of the local ESM. 
A b-thread that arrives at a bSync first empties its 
event queue by repeatedly popping and selecting 
an event. 

• External events received at a given component 
are injected into all the b-thread event queues by 
the component’s BP execution engine. B-threads 
that are already awaiting the local ESM are 
notified to handle the external events. 

5 EXAMPLE AND EVALUATION 

In many situations, participants, be they 
mechanical entities or people, have to carry out 
actions “in turns”, one participant after the other. A 



typical example is the all-way-stop traffic 
intersection (a.k.a. fourway stop). When there are 
long queues in each of the intersecting roads, the 
cars cross the intersection one at a time, from each 
of the roads, in a round-robin fashion. Another 
example is an audience in a packed stadium “doing 
the wave”, where groups of people stand up briefly 
and then sit down, in sequential order. These 
behaviors are very easily described using scenario-
based specifications, where the most basic behavior 
can be described with one scenario showing all the 
relevant entities performing their required actions in 
turn (additional scenarios for, e.g., starting such a 
wave, are beyond the scope of our discussion). 

More specifically, we consider a simple 
dronebased light show (see elaborate shows by 
Disney in www.youtube.com/watch?v=gYr-PO9meHY, 
and by Intel in 
www.youtube.com/watch?v=teQwViKMnxw): each of 
four drones has a green light and a red light. Initially, 
the drones “do the wave”, each flashing its green 
light briefly, in turn. This is implemented by the 
scenario in Algorithm 1. The scenario in Algorithm 2 
shows the projection of the scenario in Algorithm 1 
to Drone1. 

Our example is a slightly richer scenario, coded as 
a behavioral program written in C++. The four drones 
(labeled Drone0 through Drone3) participate in “a 
green wave”, starting with Drone0. After the i=0; 

while true do 
bSync(R = {FlashGreen((0+i)%4)}); 

bSync(R = {FlashGreen((1+i)%4)}); 

bSync(R = {FlashGreen((2+i)%4)}); 

bSync(R = {FlashGreen((3+i)%4)}); 

nextEvent = 
bSync(R = {NW0,NW1,NW2,NW3}); i = 

indexOfWave(nextEvent); 

end 

Algorithm 1: Pseudocode of a BP scenario demonstrating a simple 

undistributed wave example. For each bSync synchronization point, R is 

set requested events. The events NW0 through NW3 indicate a request 

the start a new wave at the corresponding component. These events are 

requested after each full cycle, and BP event selection then decides 

which component starts the new wave. The method indexOfWave 

translates an event NWi to the index i. 

i=0; while 

true do 

bSync(W = {FlashGreen((0+i)%4)}); 
bSync(R = {FlashGreen((1+i)%4)}); 
bSync(W = {FlashGreen((2+i)%4)}); 
bSync(W = {FlashGreen((3+i)%4)}); 
nextEvent = bSync(R = {NW1},W = 
{NW0,NW2,NW3}); 

i = indexOfWave(nextEvent); 

end 

Algorithm 2: Projection of the scenario of Algorithm 1 onto the 

component Drone1. Notice that requested events controlled by other 

components become waited-for (represented by the W sets). 

conclusion of two full cycles, the drones jointly 
decide which of the drones will start the next wave. 
The next wave will, again, last for two full cycles, and 
the entire process repeats five times. For now, the 
entire specification consists of a single scenario. In 
this implementation, the light-flashing events are 
labeled as FlashGreen0 through FlashGreen3, each 
representing the flashing of the light in the 
respective drone, in either a centralized or 
distributed implementation. The selection of the 
drone that will start the next wave is carried out by 
the scenarios requesting four “new wave” events, 
NW0 through NW3, and the BP eventselection 
mechanism arbitrarily selecting one of these events. 
We then associate each of the FlashGreen and the 
NW events with the corresponding component. In 
this simplified example the duration of the flashing 
of each light is implemented in a delay (sleep) of 250 
msec in the b-thread that is about the request a 
FlashGreen event. 

For simplicity, this implementation uses a 
centralizer component and does not implement a 
leaderelection mechanism. The centralizer is an 
infrastructure component which is responsbile for: 
(i) receiving notifications of events triggered in any 
behavior components, and broadcasting this 
information to all other components, and (ii) 
managing joint decisions, by receiving notices from 
any component ESM that wishes to synchronize, 
which include the sets of requested and blocked 
events, waiting for all other components to reach 
their corresponding state, selecting an event which is 
requested and not blocked, and notifying all 
components of the selection. Note that the 
centralizer serves only in simulations and studies of 
the approach, and that in real distributed 
implementations broadcasting can be performed by 
a vartiety of techniques (including the above), and 



joint decisions can be reached by classical 
distributed-processing solutions, such as leader 
election. 

At this point it is important to distinguish 
between the concepts of classes and objects and the 
concept of components as used here. Events may be 
selfstanding entities, or they may be associated with 
objects. In our example, each drone is a component, 
and objects may reside within a component, or may 
span multiple component. Such objects can be, e.g., 
a drone controller, a drone light, a wave effect 
(which can have a beginning and end events, or a 
color property) or an entire light show. As can be 
seen in the example given in Algorithm 2, each 
component executes “the entire specification”, in 
this case, this one scenario. In the distributed 
implementation, when scenarios request or wait for 
FlashGreen events, they do not synchronize, but 
when they request the four new wave events, they 
all synchronize. This results in a partially 
synchronized execution, which mimics the 
centralized execution but does so with less 
intercomponent synchronization. 

We compare our target, partially synchronized 
execution of a specification created with the 
replicateand-project implementation (abbr. R&P), 
with a fully synchronized distributed execution (abbr. 
FS), where each component executes the same 
specification, and they synchronize with every event 
selection. The decision in each component whether 
to actually turn on its own light following its 
respective FlashGreen event is left as a small 
implementation detail, i.e., the light-switch 
actuation method skips the operation if there is no 
direct connection with the device. Both 
implementations execute the same one-scenario 
specification, replicated over four components. The 
total number of events that occurred, all of which 
were broadcast to all components, is 44 — the same 
for FS and for R&P (five repetitions of two four-event 
cycles, and four joint decisions). In the R&P however, 
only four of these required synchronization. The 
total execution time was the same in both cases, 
dominated by the duration of the light flashes, but if 
synchronization delay is artificially increased, total 
execution time is increased accordingly (e.g., a 100 
msec delay purely due to synchronization, in addition 
to any ordinary communication delay, would add 400 
msec to the duration of each cycle of this single 
wave). 

We now extend our mini-light-show example 
with another wave of flashing lights. We add a 
scenario in which, starting with Drone2, each of the 
drones briefly flashes a red light, in its turn. This 
multi-cycle wave continues uninterrupted and with 
no change until the ten cycles of the green wave 
terminate. The delay (sleep) before requesting a 
FlashRed event is 1000 msec. When multiple events 
are requested e.g., both a FlashRed together with 
FlashGreen or NW, the ESM selects an event at 
random. The forty FlashGreen events in the ten-
cycles determine the beginning and end of the run, 
and the number of FlashRed events selected during 
this time varies. Since we are presently more 
interested in understanding the underlying effects 
than in measuring improvements over a large 
number of runs, we suffice with this artificial 
example. To highlight these effects we show in Table 
1 a comparison of the two cases when in both FS and 
R&P, 44 FlashGreen events were triggered. 

The basic communication delay in these 
experiments is set to 50 msec, resulting in 100 msec 
delay for broadcasting an event occurence via the 
centralizer. 

Some interesting explanations and observations 
include: 

• In FS, at every synhcronization point, both a 
FlashRed event, and, either a FlashGreen or NW 
events are enabled. This is true regardless of 
sleep delays and number of components. Hence 
in such runs, on average, half of the events will 
be FlashRed. By contrast in R&P, FlashRed is 
enabled in a component together with one of the 
other two events in a way that depends on 
lengths of sleep delays and on the number of 
components in the cycle, yielding, in our case 
fewer FlashRed events during the run. 

• Common to all runs is a 40∗250 msec taken by 
the FlashGreen events, plus 4 ∗ 100 msec 
minimum number of joint decisions, plus about 3 
seconds of overhead (total of 13-14 seconds). 

• The 41 seconds duration of R&P is the result of 
adding to the above ~13 seconds 28∗1000 msec 
FlashRed events. 

• The 67 seconds duration of FS is the result of 
adding to the above 41 seconds of R&P 17∗1000 
msec of additional FlashRed events and 85∗100 
msec communication delays due the additional 
synchronizations, all of which had to occur during 
the same ten cycles of the green wave. 



• Even though the total number of events 
triggered in R&P is less than in FS, the per-second 
event rate is higher. 

While the above examples illustrate and quantify the 
kind of savings resulting from reduced 
synchronization, we must note that the 
synchronization delay itself is sometimes not the 
main issue. For example, if we were to replace the 
FlashGreen event(s) in our design with, e.g., pairs of 
TurnGreenLightOn and TurnGreenLightOff events, all 
scenarios might have had enough time to 
synchronize with each other following the event 
TurnGreenLightOn, in parallel to waiting for the time 
ticks that would signal the end of the shining of the 
light. A relaxed synchronization approach, separating 
the scenarios of the two waves into separate 
modules within each component, would further 
streamline an otherwise fully synchronized 
implementation. Nevertheless, the reduced inter-
component synchronization still helps in simplifying 
the designs, and in enhancing system robustness. For 
example, consider recovering from loss of a drone, 
due to battery running out, while “the show must go 
on”. It is much easier for all drones to observe and 
react to delays in other drones’ behavior, when they 
are fully functional as opposed to waiting in a global 
synchronization point (even when the latter is 
enhanced with timeout facilities as in (Harel and 
Katz, 2014)). 

6 FORMAL ANALYSIS AND FUTURE 

WORK 

Previous research on scenario based programming 
has shown the great importance of formal methods 
and tools in ensuring that the resulting models, 
composed of many individual scenarios, perform as 
intended as a whole. Past efforts have yielded a large 
portfolio of tools for model checking (Harel et al., 
2011a), automatic repair (Harel et al., 2012a; Katz, 
2013) and compositional verification (Katz et al., 
2015; Harel et al., 2013b), and have even indicated 
that scenariobased programming may be more 
amenable to formal analysis than other modeling 
approaches (Harel et al., 2015c; Harel et al., 2015b). 

Given the above, applying formal analysis in the 
distributed case seems even more vital, as 
distributed models are inherently more difficult for 
humans to comprehend than centralized ones. 
Fortunately, Lemma 3.1 enables us to immediately 

apply existing tools in our setting. Because the 
centralized and distributed models present the same 
behavior, it is possible to apply existing approaches 
to the centralized version and use them to draw 
conclusions regarding the distributed case. 

Nonetheless, in a distributed environment there 
are some hazards that do not appear in the 
fullysynchronized model, and may thus be 
overlooked by existing tools: 

• Inter-component deadlock: An inter-component 
deadlock occurs when a component C has no 
enabled local events that it can trigger, and is 
thus waiting for certain external event(s). 
However due to various reasons, these external 
events may never arrive. For example, the reason 
might be that another component is actually 
waiting for an event that C needs to trigger. Note 
that a situation where a component is waiting on 
events local to a crashed component is not an 
inter-component deadlock, but a soft deadlock, 
as restarting the failed component might resolve 
the issue. 

• External event queue overflow: When a 
component repeatedly takes longer to process 
external events than it takes the other 
components to trigger and broadcast these 
events, could result in exceeding the memory 
available for the external event queue. An 
example of this could be a logger component that 
takes too long to post its log entries to a remote 
location. 

• Latency: Communication delays can cause 
poorly-designed systems to exhibit undesired 
behavior. As we discussed in Section 3.4, Lemma 
3.1 does not hold when latency is too high, and 
so such errors cannot be detected by existing 
tools. 

We are working on extending the presently 
available techniques to handle the issues listed 
above. For instance, in the latency case an improved 
model checking algorithm might simulate a realistic 
latency for external event communication, 
depending on the communication method used (e.g., 
wired communications over a local network will have 
a much lower latency than a satellite connection). 
We are also exploring the use of quantitative 
approaches to formal verification to attempt and 
derive bounds on the maximal size a queue can 
reach, given certain constraints on the broadcast and 
processing times of system components. 



In the context of inter-component deadlock, one 
approach for recovering from component failure or 
missed messages could be adding state information 
to the external events, permitting components that 

missed a transition to “fast-forward” to the correct 
state in a scenario. Another direction could involve 
having multiple instances of critical components, for 
redundancy. 

As an additional future work direction, we would 
like to study approaches to choosing a strict event 
separation. While the components are usually 
derived manually from physical system 
requirements, at times it might be desired to 
delineate their boundaries automatically based on 
other criteria. One approach is to use clustering 
algorithms that take as input a function f that assigns, 
for every two events e1,e2 ∈ Σ a correlation value f 
(e1,e2) ∈ [−1,+1]. The clustering algorithms then 
attempt to partition the events into a strict 
separation into k components (with k either known 
or unknown beforehand), such that two events are 
in the same component if their correlation is high 
and are in separate components if their correlation is 
low. While this problem is known to be NP-Complete, 
it can be approximated up to a logfactor (Bansal et 
al., 2004). 

7 RELATED WORK 

A different framework for the distributed 
execution of scenarios is presented in (Greenyer et 
al., 2015). Their approach is similar to ours in that the 
distributed components can each choose to execute 
events that they are responsible for, and selected 

events are broadcast to all other components. The 
main issues with this implementation relative to R&P 
are that (i) it requires that scenarios are written to 
not have states where events of multiple 

components are enabled, and (ii) it relies on the fact 
(enforced by a central coordinator) that all 
components observe all event occuurrences in the 
same order. By contrast, R&P automatically 
coordinates all components when reaching a state 
where a joint decision is required, and it allows 
components to advance asynchronously when 
possible, and in particular, after locally selecting an 
event. An advantage, though, of the enforced event 
order in (Greenyer et al., 2015) is that it avoids the 
risk of sensivity to different event orders. In R&P, 
automatic handling of the latter is left for future 
research, e.g. using formal methods, as discussed in 
Section 3.5. 

The research in (Greenyer et al., 2016b) describes 
(though without an implementation) a mechanism 
for the distributed execution of scenarios with 
dynamic role bindings. There, synchronization is 
done only among relevant components, as 
determined dynamically. 

An orthogonal approach proposed for 
distributing BP models (Harel et al., 2013a) is by 
partitioning the b-threads into modules, where each 
module runs its set of b-threads and synchronizes 
with other modules upon choosing events that might 
matter to other modules. However, in (Harel et al., 
2013a), the component structure is dynamic and is 
implied by the specification, in contrast to the 
present paper where the component structure is 
dictated by the physical structure of the system. 

Yet another alternative approach is suggested in 
(Harel et al., 2011b), where the distributed system 

Table 1: Comparing an execution of a fully synchronized (FS) implementation of a two-scenario specification in a four-component configuration, to an 

execution of the partially synchronized replicate-and-project implementation (R&P). See discussion in the Section 5. 

Measure: FS R&P 

Number of FlashGreen event notification 

broadcast 

40 40 

Number of FlashRed event notification broadcast∗ 45 28 

Number of “new wave” event notification 

broadcast 

4 4 

Total number of events 89 72 

Total number of Inter-component 

synchronizations 

89 4 

Run duration (in seconds) 67 41 

Events per second 1.32 1.75 
 



consists of multiple independent programs, called 
behavior nodes (b-nodes), each with its own set of 
internal events. Such b-nodes never synchronize 
with each other. Similar to our approach the b-nodes 
communicate by external events, however those 
events require manual translation to and from 
internal events. By contrast, in our approach external 
events emerge naturally and automatically from 
internal events. Furthermore our approach supports 
more general designs, inter-component scenarios 
and fine-grained synchronizations when scenarios 
give rise to inter-component decisions. 

There has also been work on synthesizing 
scarcely-synchronizing distributed controllers from 
scenario-based specifications (Brenner et al., 2015). 
Distributed finite automaton controllers can be 
synthesized from scenario specifications in a way 
that greatly reduces communication overhead 
compared to previous approaches, especially 
compared to the the broadcasts of events as also 
suggested in this work. However, the synthesis 
procedure is computationally complex and does not 
scale well as specification and system size increase. 
In (Fahland and Kantor, 2013), the authors study a 
similar problem and present an approach for 
synthesizing executable implementations from 
specifications given in a distributed variant of LSC, 
termed dLSC. 

Outside the scope of scenario-based modeling, 
the trade-off between performance optimization 
and communication minimization in parallel and 
distributed settings has been studied extensively. 
These two conflicting goals are discussed in (Cheng 
and Robertazii, 1988; Yook et al., 2002). In (van 
Gemund, 1997) the author suggests imposing certain 
limitations on the communication between the 
components, thus allowing for execution-time 
optimization to be performed during compilation. 

8 CONCLUSION 

We presented an approach towards transforming a 
scenario-based model so that it can be executed in a 
distributed configuration, by creating 
componentspecific variations, or projections, based 
on each component’s scope of responsibility. This 
replicate-andproject approach allows us to distribute 
any centralized model based on specifications which 
can be derived from practical physical requirements, 
such as number of processors and the specific 

hardware controlled by each of them. We have 
shown that the resulting distributed models behave 
similarly to the centralized model from which they 
originated. This important property allows us to carry 
out most of the modeling work, including testing and 
analysis, in the centralized setting, which is easier to 
modelcheck and reason about. The projected models 
retain the naturalness and incrementality traits of 
behavioral programming. In their avoidance of 
excessive synchronization, they improve robustness 
and the ability to model systems with multiple time 
scales. To the list of future research avenues which 
this direction opens, one may add the possibility that 
replicate-and-project approaches may be applicable 
in software development contexts other than 
scenario-based / behavioral programming. 
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A Appendix: Proof for Lemma 3.1 

Here we discuss the execution semantics of our 
distributed model, show that they produce runs that 
are compatible with the BP semantics, and prove an 
important property: assuming communication is 
instantaneous, the distributed system behaves 
identically to the undistributed one. 

Definition A.1. A distributed model produced from a 
behavioral model M, with respect to a strict event 

separation, S = {C1,...,Ck}, denoted as D(M,S), is 

defined to be the set of projections of M along the 
components of the event separation: 

D(M) = {project(M,C1),...,project(M,Ck)}. 

Executing a distributed model means executing the 
component models (i.e., the projections) according 
to the operational semantics defined in Section 3.3. 

Next we formally define the global state (the cut) 
of a behavioral model that is being executed: 

Definition A.2. Given a behavioral model M = 
{BT1,...,BTn}, the program cut r ∈ Q1×···×Qn is defined 
to be the current model state: r = hq1,...,qni where qi 

is the current state of b-thread BTi. 

For the remainder of this section we assume that 
the inter-component communication latency is 
negligible, and that external-event processing is 
instantaneous. This allows us to assume that 
selected events can be ordered serially. Given these 
conditions, we can make the following observation: 

Claim A.1. In a distributed execution of D(M,S), the 
cuts of all component models are identical at every 
point in time. 

Proof. The proof is by induction. For the basis of the 

induction, observe that in the execution of D(M,S) all 

components begin at the same initial program cut 

. Next, for the inductive step, suppose that 
all components are currently in cut hq1,...,qni. Once 
any component selects an events e ∈ Σ, that event is 
instantly broadcasted and processed by the rest of 
the components. Each projected b-thread BTj

i in 
component Cj transitions to state δi(qi,e). By 
definition of the projection process, the δi functions 
are identical across components, and hence all 
projections of each thread proceed to the same 

successor state. The claim follows.  

As the component programs cuts are identical 
across all components, we can extend the definition 
and refer to program cut of a distributed system as 
the program cut of any of the components. 

Definition A.3. An enabled event at some program 
cut of behavioral model M is an event that is 
requested by some b-thread and is not blocked by 
any of the bthreads of M. Analogically, for a 

distributed system D(M) an enabled event is an 

event requested by some b-thread of some 
component, and not blocked by any b-thread of any 
component. 

Definition A.4. Let ∆(r,e) denote the program cut 
transition function, where r is a program cut and e ∈ 
Σ is an event. ∆ is fully defined by the bthreads state 
transition function δi as follows: for r = 
hq1,...,qni,∆(r,e) = hδi(q1,e),...,δi(qn,e)i. 

We can now define what the formal language 
generated by a behavioral model is and prove that 
the languages of the undistributed model and the 
distributed one are the same. 

Definition A.5. The language L of a behavioral model 
M denoted L(M) is a set of words defined over the 
alphabet Σ. A word w = e1e2...el ... is in L(M) if its 
letters constitute a legal run of M; i.e., if we begin in 
the initial cut and apply ∆ according to the sequence 
of events in w, the next event is always enabled in 
the current cut. The language of the distributed 

model D(M,S) is defined similarly. 

The equality between L(M) and L(D(M,S)) will 

follow from the following claim: 

Claim A.2. At any given program cut r = hq1,...,qni, the 

sets of all enabled events of M and of D(M,S) are 

equal. 



Proof. By definition, the set of enabled events of M is 

(S
i Ri(qi)) \ (S

i Bi(qi)). In the distributed model 

D(M,S), as components cannot block external 

events, the set of enabled events is the union of sets 
of enabled 

events of 
each 

component: 

[ 

k 

[ 

k 

! 

which is identical to the set of enabled events of M. 

 

Claim A.3. The language of a behavioral model L(M) 
is equal to the language of its distributed version 

L(D(M,S)). 

Proof. As the thread transition functions are 
unchanged by the projection, it immediately follows 
that, for any cut r and event e, ∆(r,e) is equal in M 

and in D(M,S). Furthermore we saw in claim A.2 that 

the enabled events of M and D(M,S) are equal at any 

given program cut. Finally, as the initial cuts for M 

and D(M,S) are identical, it follows by induction that 

both models generate the same language.  

Thus, when ignoring communication latency, the 
distributed system operates indistinguishably from 
the original undistributed one. This also implies that 
the distributed model behaves correctly, i.e., 
produces executions that are allowed under BP 
semantics. 


