
Distributing Scenario-Based Models: A Replicate-and-Project Approach

Shlomi Steinberg1, Joel Greenyer2, Daniel Gritzner2, David Harel1, Guy Katz3 and Assaf Marron1
1The Weizmann Institute of Science, Rehovot, Israel

2Leibniz Universitat Hannover, Hannover, Germany¨
3Stanford University, Stanford, USA

{shlomi.steinberg, david.harel, assaf.marron}@weizmann.ac.il, {greenyer, daniel.gritzner}@inf.uni-hannover.de,

 guyk@cs.stanford.edu

Keywords: Software Engineering, Scenario-Based Modeling, Concurrency, Distributed Systems
Abstract: In recent years, scenario-based modeling has been proposed to help mitigate some of the

underlying difficulties in modeling complex reactive systems, by allowing modelers to specify
system behavior in a way that is intuitive and directly executable. This modeling approach
simplifies the specification of systems that include events occurring in distinct system
components. However, when these system components are physically distributed, executing
the scenario-based model requires inter-component coordination that may negatively affect
system performance or robustness. We describe a technique that aims to reduce the amount
of joint eventselection decisions that require coordination and synchronization among
distributed system components. The technique calls for replicating the entire scenario-based
executable specification in each of the components, and then transforming it in a
component-specific manner that induces the required differences in execution while
reducing synchronization requirements. In addition to advantages in streamlining design and
improving performance, our approach captures the fact that in certain “smart” distributed
systems it is often required that components know what rules govern the behavior of other
components. Our evaluation of the technique shows promising results.

1 INTRODUCTION

With modern reactive systems becoming both
pervasive and highly complex, modeling them is
becoming increasingly difficult. Modelers are forced
to spend ever-larger amounts of time and effort in
order to reconcile two goals: (1) accurately describe
complex real-world systems and phenomena; and (2)
do so using models that are simple, comprehensible
and intuitive to humans. These two goals are often
conflicting: it is difficult to describe the properties of
such systems accurately while at the same time
avoiding clutter, which makes it harder for humans
to comprehend the resulting models.

Over the recent two decades, an approach
termed Scenario-Based Modeling (Damm and Harel,
2001) has emerged as an attempt at tackling these
difficulties. The idea at its core is to model systems in
a way that is more intuitive and understandable to

humans — by defining scenarios that describe
desirable or undesirable system behavior — and
then to automatically combine these scenarios in a
way that produces a cohesive, global model.
Appropriate scenario-based approaches and tools
have executable semantics, thus helping to
streamline the deployment of scenario-based
models in the real world.

A scenario-based approach has been claimed to
be more intuitive for humans to understand (see,
e.g., (Gordon et al., 2012)). It allows the modeler to
specify different but possibly interrelated behavioral
aspects as separate scenarios, reducing the inherent
complexities of the modeling process. However, by
default and as explained later, a scenario-based
execution requires that all scenarios synchronize at
every step for the purpose of joint event selection.
When executing scenario-based specifications in a
distributed architecture, inter-scenario

synchronization induces inter-component
synchronization, which may be undesirable in real-
world systems, where communication is often costly,
slow, or unreliable. This difficulty constitutes a
serious barrier when considering the use of scenario-
based modeling in a real-world setting.

We seek to address this problem by proposing an
automated technique for the transformation of
classical, highly synchronous scenario-based models
into equivalent models with a greatly reduced level
of synchronization. The basis of our approach is a
rather straightforward replicate-and-project
technique but with some subtle facets: we replicate
the full set of scenarios in all the distributed
components but project them in a component-
specific fashion, so that each component is made
responsible only for the actions that fall within its the
local scope. Other, external actions are assumed to
be performed by projections running on other
components.

In order to make the replicated-and-projected
scenarios behave the same as their non-distributed
version, the distributed components broadcast the
local actions they perform to all other components.
At times a situation arises that forces some of the
distributed components to mutually agree on the
next action to perform. This might happen either due
to an exclusive choice among multiple enabled
actions (i.e., events), or due to communication
latency that might result in different orders of
broadcast actions as observed by different
components. An important part of the work in this
paper is dedicated to classifying these cases,
presenting them when they arise, and proposing
practical approaches to resolving them.

This process is handled automatically by our
distribution algorithm and infrastructure, and, as we
discuss and demonstrate later, it aims to generate a
distributed model that has as few synchronization
points as possible.

The motivation behind the approach is to retain
the modeler’s ability to use classical scenario-based
modeling, with its associated advantages, but to be
able to then transform the model into a version that
is more amenable to distribution and deployment in
the real world. We prove that, under certain
restrictions, our proposed transformation preserves
the behavior of the original model. This gives rise to
a methodology for developing distributed scenario-
based models, where one models a distributed
system as if it were centralized, and the model is then

automatically adjusted to more accurately simulate
(or even run in) its final setting.

Automatic distribution of general models (i.e.,
not just scenario-based) or synthesizing distributed
models from specifications have been long-standing
goals of the software modeling and engineering
community. Specifically, distributed synthesis is
known to be undecidable in some cases (Stefanescu
et al., 2003). We contribute to this effort by studying
the problem in the context of scenario-based
modeling, and leveraging some of the paradigm’s
properties of naturalness and relative simplicity.
However, difficulties nevertheless arise. We classify
and describe them, and explain how they can still be
addressed. Our experimental results indicate that
the technique holds much potential for becoming
practical.

The rest of the paper is organized as follows. In
Section 2 we provide a brief introduction to the
scenario-based approach. In Section 3 we introduce
the notion of a distributed scenario-based model,
and show how it can be automatically generated
from a non-distributed model by our replicate-and-
project technique. The correctness of this
transformation is proved in Appendix A. Section 4
describes how the approach can be applied when
different components in the model operate on
different time scales. An example implementation
and its evaluation appear in Section 5, followed by a
discussion in Section 6 of our ongoing and planned
future work. In section 7, we discuss related work
that has been carried out on automatic distribution,
both in the general setting and in the context of
scenario-based modeling. We conclude in Section 8.

2 BACKGROUND: SCENARIO-BASED

MODELING

Scenario-based modeling was first presented via
the Live Sequence Charts (LSC) formalism (Damm and
Harel, 2001; Harel and Marelly, 2003a). The
approach, aimed at developing executable models of
reactive systems, shifts the focus from describing
individual objects of the system into describing
individual behaviors of the system. The basic building
block in this approach is the scenario: an artifact that
describes a single behavior of the system, possibly
involving multiple different components thereof.
Scenarios can describe either desirable behaviors of
the system or undesirable ones. A set of user-defined

scenarios can then be interwoven into one cohesive,
potentially complex, system behavior.

Several facets of scenario-based modeling have
been discussed and handled in different ways:
scenarios can be represented graphically, as in the
original LSC approach, or textually (Harel et al.,
2012b; Greenyer et al., 2016a); scenario-based
models can be executed by na¨ıve play-out (Harel
and Marelly, 2003b), by smart playout with
lookahead (Harel et al., 2002) or via controller
synthesis (see, e.g., (Harel and Segall, 2011; Greenyer
et al., 2016a)). The modeling process can be
augmented by a variety of automated verification,
synthesis and repair tools (Harel et al., 2012a; Harel
et al., 2013b). However, research has shown that the
basic principles at the core of the approach, shared
by all flavors, are naturalness and incrementality —
in the sense that scenario-based modeling is easy to
learn and understand, and that it facilitates the
incremental development of complex models
(Gordon et al., 2012; Alexandron et al., 2014). These
properties stem from the fact that modeling is done
in a way similar to the way humans explain complex
phenomena to each other, detailing the various
steps and behaviors one at a time.

For the remainder of the paper, we focus on a
particularly simple variant of scenario-based
modeling, called behavioral programming (BP) (Harel
et al., 2012b). Despite its simplicity, BP has been
successfully used in developing medium scale
projects (Harel and Katz, 2014; Harel et al., 2016),
and is also known to be particularly amenable to
automatic analysis tools (Harel et al., 2015c). These
properties render BP a good candidate for
demonstrating our approach. The rest of this section
is dedicated to demonstrating and formally defining
BP.

In BP, a model is a set of scenarios, and an
execution is a sequence of points, in which all the
scenarios synchronize. At every behavioral-
synchronization point (abbreviated bSync) each
scenario pauses and declares events that it requests
and events that it blocks. Intuitively, these two sets
encode desirable system behaviors (requested
events) and undesirable ones (blocked events).
Scenarios can also declare events that they passively
wait-for — stating that they wish to be notified if and
when these events occur. The scenarios do not
communicate their event declarations directly to
each other; rather, all event declarations are
collected by a central event selection mechanism
(ESM). Then, at every synchronization point during

execution, the ESM selects (triggers) an event that is
requested by some scenario and not blocked by any
scenario. Every scenario that requested or waited for
the triggered event is then informed, and can update
its internal state, proceeding to its next
synchronization point. Fig. 1 (borrowed from (Harel
et al., 2016)) demonstrates a simple behavioral
model.

Formally, BP’s semantics are defined as follows. A
scenario, also referred to in the literature as a
behavior thread (abbreviated b-thread), is defined as
a tuple

BT = hQ,q0,δ,R,Bi

and with respect to a global set of events Σ. The
components of the tuple are: a set of states Q
representing synchronization points; an initial state
q0 ∈ Q; a deterministic transition function δ : Q ×Σ →
Q that specifies how the thread changes states in
response to the triggering of events; and, two

labeling functions, R : Q → P(Σ) and B : Q → P(Σ), that

specify the events that the thread requests (R) and
blocks (B) in a given synchronization point.

A behavioral model M is defined as a collection of
 ADDHOTWATER ADDCOLDWATER STABILITY EVENT LOG

···

WATERLOW
ADDHOT
ADDCOLD

ADDHOT
ADDCOLD

ADDHOT
ADDCOLD

···

Figure 1: Incrementally modeling a controller for the water level in a tub.

The tub has hot and cold water sources, and either may be turned on in

order to increase/reduce the water temperature. Each scenario is given as

a transition system, where the nodes represent synchronization points. The

scenario ADDHOTWATER repeatedly waits for WATERLOW events and requests

three times the event ADDHOT. Scenario ADDCOLDWATER performs a similar

action with the event ADDCOLD, capturing a separate requirement, which

was introduced when adding three water quantities for every sensor

reading proved to be insufficient. When a model with scenarios

ADDHOTWATER and ADDCOLDWATER is executed, the three ADDHOT events and

three ADDCOLD events may be triggered in any order. When a new

requirement is introduced, to the effect that water temperature be kept

stable, the scenario
STABILITY is added, enforcing the interleaving of ADDHOT and ADDCOLD events

by using event blocking. The execution trace of the resulting model is

depicted in the event log.

b-threads

M = {BT1,...,BTn}, all of them with

respect to the same event set Σ. Denoting the

individual b-threads as

BTi ,

an execution of model M starts at the initial state

. Then, at every state hq1,...,qni, the model
progresses to the next state hq¯1,...,q¯ni by:

1. selecting an event e ∈ Σ that is enabled, i.e.
requested by at least one b-thread and blocked
by none:

!

e

2. triggering event e and advancing the individual
bthreads according to their transition systems:

 ∀i, q¯i = δi(qi,e)

For reactive systems, executions are often infinite —
although BP can also be used to model systems with
finite executions.

The BP definitions above are abstract, and make
it easier to reason about behavioral models.
However, for practical purposes, the BP modeling
principles have been integrated into a variety of high-
level languages such as Java, C++, Erlang and
Javascript (see the BP website at http://www.b-
prog.org/). These frameworks allow engineers to
integrate reactive scenarios into their favorite
programming or modeling environments. Further,
the same principles as underly BP, play a significant
role in several popular modeling frameworks such as
publish-subscribe architectures (Eugster et al., 2003)
and supervisory control (Ramadge and Wonham,
1987).

3 DISTRIBUTION VIA REPLICATE-AND-

PROJECT

The execution of a classical BP model, as described in
Section 2, is highly synchronized and centralized by
nature: at every step along the execution, the ESM
gathers the sets of requested and blocked events
from each individual b-thread, selects an enabled
event, and then broadcasts it back to the bthreads.
While this underlies some of the benefits of BP (Harel

et al., 2012b), it also results in limited scalability and
distributability. Excessive synchronization tends to
add unnecessary complexity, impact performance,
and create inter-component dependencies which
reduce robustness. For example, having a scenario
wait for an event that is supposed to be requested by
a scenario running on a separate, failed component
might result in a deadlock. Furthermore,
synchronization forces b-threads to execute in
lockstep, which can be undesirable if they are to
model phenomena that occur at different
timescales.

In this section we propose a distribution process
that transforms a centralized (undistributed)
behavioral model into a distributed one: it generates
multiple component models — subsets of the
original, centralized behavioral model — each
designed to be run on a separate machine. When run
simultaneously, however, these component models
mimic the behavior of the original system, but
require much less synchronization. Below we
elaborate on the abstract concepts and formal
definitions of the proposed process. An example
showing how these concepts apply in the setting of a
particular distributed application appears in Section
5.

Each of the component models produced by our
distribution process is a behavioral model in its own
right, intended to be responsible for a certain subset
of the events of the original model, which are
uniquely owned and controlled by it — meaning that
no other component can request or block them. The
component models are intended to be executed in
an asynchronous manner in a distributed system,
resulting in a natural, robust and simple extension of
the scenariobased paradigm.

The main difficulty in this approach is to ensure
that the distributed components behave in the same
way as the original model although they are not
synchronized at every step. In order to resolve this
difficulty, the crux of our distribution process is the
replication of the entire set of original scenarios in
each of the distributed components, granting the
components the ability to follow what other
components are doing, but avoiding synchronization
when possible. By default, every component runs a
local ESM, which performs local event selection
without synchronizing with other components.
However, at every synchronization point where
multiple components have to agree on the particular
event to select, the ESMs of these components do
synchronize.

The communication between components is
asynchronous, and they notify each other about
chosen events as they progress through the
scenarios. Keeping track of each scenario state is
simply a matter of listening to incoming broadcasts
and updating the current state.

The classical problem of multicasting or
broadcasting a message efficiently in a distributed
network is well studied (e.g. (Miller and Poellabauer,
2009) presents an approach for minimum-energy-
broadcasts in distributed networks with limited
resources and unknown topology), however it is
beyond the scope of this paper. For simplicity we
assume that the cost of those boradcasts and
bookkeeping is small. Note that even in systems with
a large number of components and scenarios, a
component often needs to keep track of only a small
subset of the other components; for example, an
autonomous car considers other cars only when they
are in its immediate vicinity, and does not keep track
of all vehicles in the world. Still, this dynamic
registering and unregistering of components is also
beyond the scope of this paper and is left for future
work.

In the remainder of the section we formalize
these notions and the distribution process itself.

3.1 Event Components

Let M denote a behavioral model over event set Σ.
An event component E is a subset of the global event
set, E ⊆ Σ. An event e ∈ E is said to be a local event of
E; otherwise, if e ∈/ E then e is external to E.

A collection of event components {E1,...,Ek} is an

event separation of . An event
separation is strict if it also forms a partition of Σ:

 ∀ i, j, 1 ≤ i 6= j ≤ k =⇒ Ei ∩Ej = 0/.

In the remainder of the paper we will only deal with
strict event separations and assume that they are
provided by the user to reflect the physical layout of
the system and the responsibility of each distributed
component. Automated ways of generating an event
separation are discussed in section 7.

3.2 Component Models

Given a behavioral model M = {BT1,...,BTn}, each
event component E gives rise to a component model
C, in the following way. C is the behavioral model

C , obtained by projecting each of
the original b-threads along event component E,
denoted C = project(M,E). Formally, if BTi =

then

BTEi

The state set Qi, initial state qi
0 and transition

function δi are unchanged; whereas the labeling

functions Ri and Bi are changed into:

Ri
E(q) = Ri(q)∩E

Bi
E(q) = Bi(q)∩E

Intuitively, the projected b-threads are modified to
only request and block events that are in E; but
because δi is unchanged they continue to respond in
the same way to the triggering of all events, including
those not in E. Consequently, requested external
events effectively become waited-for events.

Now, given a strict event separation {E1,...,Ek}, our
distribution process entails projecting the model M
along each of the event components, producing a set
of component models {C1,...,Ck} such that

 ∀ 1 ≤ i ≤ k, Ci = project(M,Ei)

By treating each component Ci as a separate
behavioral model that performs event selection
locally, the components can be run independently
and in a distributed manner. The following useful
corollary is a direct conclusion that arises from the
definition of the distribution process.

Corollary 3.1. An event e ∈ Σ can be selected by one
component only.

Proof. {E1,...,Ek} is a strict event separation, hence
there is only one value of i such that e ∈ Ei. By
definition only Ci can request e. Therefore only Ci can

select e.

In order to keep the execution consistent
between components, occasionally two or more
components may need to synchronize, as we discuss
in the next section.

3.3 Executing Component Models

The following definition is useful in identifying the
points during the execution in which multiple
components need to synchronize:

Definition 3.1. Observe a component model Cj =

project(M,Ej), a b-thread BTi and some state q ∈ Qi.

We say that BTi is controlled by Cj at state q if one or

more of Ej’s local events is requested or waited-for in

q; i.e., if ∃e ∈ Ej such that δi(q,e) 6= q or e ∈ Ri(q).

Whenever a scenario reaches a state that is
controlled by multiple components, these
components synchronize with each other and
together select an event for triggering, while the
other components only track the progress passively
and need not synchronize. We refer to these
situations, where at some state a single b-thread is
controlled by multiple components, as inter-
component decision points. For example, an inter-
component decision point occurs when two robot-
controlled cars (each operated by a separate
component) arrive at an intersection exactly at the
same time and attempt to decide on which car
should yield to the other. Because the scenario
controlling the intersection waits for movement
events that are controlled by both components, the
two car components are forced to synchronize,
mutually agree on a single triggered event, and then
broadcast it — informing all interested threads, in all
components, about the selection.

In order to support this sort of distributed
execution, each of the component models runs an
ESM that is slightly different from the one described
in Section 2. Specifically, the ESM from Section 2 is a
tool for picking one event for triggering from among
the set of all enabled events. In contrast, each of our
distributed ESMs is capable of broadcasting events
that were triggered locally by “its” component to all
other model components, and, dually, to process
external events broadcast by the ESMs of other
components.

The distributed version of the ESM operates as
follows:

• When a local event is triggered by a component’s
ESM, that event is broadcast to all other running
components.

• When a component’s ESM receives an event e
that was broadcast by another component’s
ESM, e is added to a dedicated event queue
within the ESM.

• When choosing an event for triggering, an ESM
first checks its event queue for external events. If
the queue is not empty, it pops an event from the
queue and declares it to be the triggered event

to its local b-threads. If the queue has multiple
stored events, this process repeats until the
queue becomes empty. Once the queue is empty
the ESM resumes normal event selection, as
described in Section 2: it selects a local event that
is requested and not blocked.

• Inter-component synchronizations: Whenever a
b-thread arrives at a state that requires
synchronization with one or more other
components, the ESMs of these threads
synchronize and mutually agree upon a triggered
event. This event is then broadcast to all ESMs.

Event selection is performed precisely as in the case
of a centralized ESM, by choosing a requested but
not blocked event.

The actual inter-component decision between
multiple ESMs can be performed, e.g., via a
distributed leader election protocol (Ghosh and
Gupta, 1996). Once a specific ESM has been selected
as the leader, it chooses the next triggered event
based on the requested and blocked events in the
current state.

We observe that deadlocks need to be treated
differently in the distributed case than in the
centralized case. According to the semantics given in
Section 2, the system deadlocks if the ESM
determines at some point that there all requested
events are blocked, so that none can be selected.
However, in the distributed case this is no longer the
case if one of the local bthreads has an external
waited-for event, since there is yet hope that
another component might broadcast this event later.
Thus, the component is stalled until such a broadcast
arrives.

3.4 Equivalence to Centralized Executions

Given a centralized behavioral model M over an
event set Σ and a strict event separation {E1,...,Ek}, our
distribution process produces a set of component
models {C1,...,Ck}. These components have the
following property:

Lemma 3.1. Assuming that communication between
component models is instantaneous, the set of all
possible executions (the language) of M is identical
to the set of all possible executions produced by the
component models {C1,...,Ck} when run jointly in a
distributed fashion.

This lemma, which is the main proven result of
this work, is of practical importance, as it implies that
the distribution process will not cause the model to

behave in unexpected ways (note that this lemma is
about the collection of all runs, and does not claim
that if the distributed and centralized models are run
side-by-side, they will produce the same run). In
other words, one can study and analyze the
centralized version of the model (which is far easier
for humans to grasp and comprehend, and for tools
to analyze) and the conclusions will apply to the
distributed setting too. We will discuss some of the
implications of this result in Section 6. The lemma is
proved in Appendix A.

At first glance, the requirement that
communication be instantaneous might seem
unrealistic. However, in practice we make no such
assumptions and our technique can also be used
where communication is delayed due to various
reasons, as discussed in the next section.

3.5 Dealing with Latency

Once we relax our assumption that communication
latency and external-event processing is
instantaneous, the distributed system’s behavior
may diverge from that of the centralized case in a
number of ways.

1. Inter-component decisions: In section 3.3 we
described how multiple components may need to
synchronize in order to proceed in a state that
they all control. As a simple example, consider a
model with a single b-thread and a single
synchronization point, in which two events, a and
b, are simultaneously requested. Clearly,
executing this model will result in either a or b
getting triggered.

Now, suppose that we distribute this program
with the strict event separation {E1 = {a},E2 = {b}}.
The projection process results in two component
models, C1 and C2. In C1 the projected single
thread will request a while waiting for b, and in
C2 the projected thread will request b while
waiting for a.

In a no-latency situation, this is acceptable: no
matter which component performs event
selection first, it will notify the second
component immediately, resulting in either a or
b getting triggered, but not both. However, if
communication is not immediate, it is possible
that component C1 will trigger a and component
C2 will trigger b, resulting in a behavior that the
original model did not have.

As each component knows at each state which
components control the b-thread, the solution is
simply to synchronize with them.
Intercomponent decisions are handled entirely
by our distribution framework as outlined in
Section 3.3 above.

2. Maintaining order: It is possible for broadcast
events to arrive at different components in
different orders, resulting in these components
having different views of the execution.
Consequently, projections of the same b-thread
within these components may be in different
states. As with inter-component decisions, this
would create inconsistent behavior.

Observe that this situation can only arise at system
states where event-selection decisions that differ

across components result in transitions to different
successor states. Detecting these instances can be

performed offline by a model checker, or by an
online look-ahead mechanism. Once the potentially

problematic states are identified, the problem can
be circumvented by having the distributed

components treat them as inter-component
decision points, and perform inter-component

synchronization. Note that we assume that between
any two components, communications arrive

ordered correctly. This can be guaranteed by TCP or
PGM, but not by protocols that allow out-oforder

delivery, such as UDP.

Another proposed solution is to synchronize the
clocks of the different components, and add a
time-stamp to each selected event. By delaying
the announcement of received external events
and selected local events to a component’s b-
threads, the ESM can interweave the events in
the correct order.

3. Accommodating delays: Consider the following
example: a robot-driven car is approaching an
intersection, and in order to avoid collisions it
must communicate with other cars. However, if
the communication happens just before entering
the intersection, any delay or missed messages
could cause an accident.

In order to avoid this kind of issues, programs
designed for distribution should employ design
patterns and methods that take a realistic
communication delay into account. E.g.,
checking for other cars early, while approaching
the intersection, rather than, say, relying on
scenarios to block all events of cars entering the
intersection following the occurrence of an event

reporting that one car already entered that
intersection. We feel that this is a valid
assumption in designing distributed systems and
does not contradict or make redundant the
advantages of BP.

4 PER-COMPONENT TIMESCALES

As explained earlier, in a centralized behavioral
model, all b-threads must synchronize in order for
the ESM to announce the selected event. The
bthread that takes the longest to reach its
synchronization point (e.g., because it performs slow
local calculations or writes to a file) forces the rest of
the bthreads to wait until it synchronizes. This
lockstep execution thus results in the slowest b-
thread dictating the timescale for the whole system.
This is a common issue in behavioral models that
involve multiple scenarios operating on different
timescales (see, e.g., (Harel et al., 2015a)), and it also
applies to our distributed variant of BP: for example,
a slower component might experience delays before
broadcasting events that a faster component
depends on, forcing the latter to wait. Furthermore,
external events can “pile up”, increasing the
processing time of future event selections and
delaying the selection of potentially crucial events.

In this section we discuss how to allow the
generated components to operate efficiently on
different timescales.

Previous work (Harel et al., 2015a) has tackled
this difficulty in a variety of ways. One approach in
(Harel et al., 2015a) introduced an eager execution
mechanism for behavioral models. This technique
lessened the severity of the problem by sometimes
allowing the ESM to trigger an event even when
some of the b-threads have not yet synchronized.
Our distribution technique lends itself naturally to
this kind of idea, because within a given component,
we know that b-threads controlled by other
components, which have not synchonized yet,
cannot block local requested events. Thus, by
applying a method similar to eager execution, the
ESM does not have to wait for b-threads which wait
only for external events (such bthreads may be in the
original specification, or they may be the projected
version of b-threads with event requests changed to
waiting for events).

In our distributed setting, eager execution can be
applied as follows. Given a behavioral model M =

{BT1,...,BTn} and its distributed component models
{C1,...,Ck}, let q∈Qi be a state in which b-thread BTi is
not controlled by component Cj. Observe BTj

i, i.e., the
copy of BTi that is running in component Cj. Because
BTj

i is not controlled by Cj, it does not request or wait
for any local events and must be waiting for an
external event e controlled by some other
component Cm. In other words, until such time as e is
triggered by Cm, thread BTj

i will not affect local event
selection in component Cj. In such situations we
propose to temporarily detach thread BTj

i from its
local ESM, effectively allowing event selection in
component Cj without considering BTj

i. This allows
component Cj to operate in its own pace, while BTj

i

can be regarded as temporarily operating in the
same time scale as Cm. Whenever e is finally triggered
and BTj

i reaches a new state ¯q in which it is
controlled byCj, it is reattached to the local ESM. This
technique readily enables different components to
simultaneously operate at different timescales.

To support eager execution within our distributed
framework, the external event queue within each

component model needs to be decoupled from the
distributed ESM. Instead, each b-thread in the

component receives its own external-event queue,
and at each synchronization point pops all external

events and selects them one at a time. The changes
in the BP execution engine are summarized as

follows:

• Each b-thread should flag itself as synchronized
or unsynchronized at each bSync, depending on
the state.

• A separate event queue is created in each b-
thread, thus allowing b-threads to process
external events independently of the local ESM.
A b-thread that arrives at a bSync first empties its
event queue by repeatedly popping and selecting
an event.

• External events received at a given component
are injected into all the b-thread event queues by
the component’s BP execution engine. B-threads
that are already awaiting the local ESM are
notified to handle the external events.

5 EXAMPLE AND EVALUATION

In many situations, participants, be they
mechanical entities or people, have to carry out
actions “in turns”, one participant after the other. A

typical example is the all-way-stop traffic
intersection (a.k.a. fourway stop). When there are
long queues in each of the intersecting roads, the
cars cross the intersection one at a time, from each
of the roads, in a round-robin fashion. Another
example is an audience in a packed stadium “doing
the wave”, where groups of people stand up briefly
and then sit down, in sequential order. These
behaviors are very easily described using scenario-
based specifications, where the most basic behavior
can be described with one scenario showing all the
relevant entities performing their required actions in
turn (additional scenarios for, e.g., starting such a
wave, are beyond the scope of our discussion).

More specifically, we consider a simple
dronebased light show (see elaborate shows by
Disney in www.youtube.com/watch?v=gYr-PO9meHY,
and by Intel in
www.youtube.com/watch?v=teQwViKMnxw): each of
four drones has a green light and a red light. Initially,
the drones “do the wave”, each flashing its green
light briefly, in turn. This is implemented by the
scenario in Algorithm 1. The scenario in Algorithm 2
shows the projection of the scenario in Algorithm 1
to Drone1.

Our example is a slightly richer scenario, coded as
a behavioral program written in C++. The four drones
(labeled Drone0 through Drone3) participate in “a
green wave”, starting with Drone0. After the i=0;

while true do
bSync(R = {FlashGreen((0+i)%4)});

bSync(R = {FlashGreen((1+i)%4)});

bSync(R = {FlashGreen((2+i)%4)});

bSync(R = {FlashGreen((3+i)%4)});

nextEvent =
bSync(R = {NW0,NW1,NW2,NW3}); i =

indexOfWave(nextEvent);

end

Algorithm 1: Pseudocode of a BP scenario demonstrating a simple

undistributed wave example. For each bSync synchronization point, R is

set requested events. The events NW0 through NW3 indicate a request

the start a new wave at the corresponding component. These events are

requested after each full cycle, and BP event selection then decides

which component starts the new wave. The method indexOfWave

translates an event NWi to the index i.

i=0; while

true do

bSync(W = {FlashGreen((0+i)%4)});
bSync(R = {FlashGreen((1+i)%4)});
bSync(W = {FlashGreen((2+i)%4)});
bSync(W = {FlashGreen((3+i)%4)});
nextEvent = bSync(R = {NW1},W =
{NW0,NW2,NW3});

i = indexOfWave(nextEvent);

end

Algorithm 2: Projection of the scenario of Algorithm 1 onto the

component Drone1. Notice that requested events controlled by other

components become waited-for (represented by the W sets).

conclusion of two full cycles, the drones jointly
decide which of the drones will start the next wave.
The next wave will, again, last for two full cycles, and
the entire process repeats five times. For now, the
entire specification consists of a single scenario. In
this implementation, the light-flashing events are
labeled as FlashGreen0 through FlashGreen3, each
representing the flashing of the light in the
respective drone, in either a centralized or
distributed implementation. The selection of the
drone that will start the next wave is carried out by
the scenarios requesting four “new wave” events,
NW0 through NW3, and the BP eventselection
mechanism arbitrarily selecting one of these events.
We then associate each of the FlashGreen and the
NW events with the corresponding component. In
this simplified example the duration of the flashing
of each light is implemented in a delay (sleep) of 250
msec in the b-thread that is about the request a
FlashGreen event.

For simplicity, this implementation uses a
centralizer component and does not implement a
leaderelection mechanism. The centralizer is an
infrastructure component which is responsbile for:
(i) receiving notifications of events triggered in any
behavior components, and broadcasting this
information to all other components, and (ii)
managing joint decisions, by receiving notices from
any component ESM that wishes to synchronize,
which include the sets of requested and blocked
events, waiting for all other components to reach
their corresponding state, selecting an event which is
requested and not blocked, and notifying all
components of the selection. Note that the
centralizer serves only in simulations and studies of
the approach, and that in real distributed
implementations broadcasting can be performed by
a vartiety of techniques (including the above), and

joint decisions can be reached by classical
distributed-processing solutions, such as leader
election.

At this point it is important to distinguish
between the concepts of classes and objects and the
concept of components as used here. Events may be
selfstanding entities, or they may be associated with
objects. In our example, each drone is a component,
and objects may reside within a component, or may
span multiple component. Such objects can be, e.g.,
a drone controller, a drone light, a wave effect
(which can have a beginning and end events, or a
color property) or an entire light show. As can be
seen in the example given in Algorithm 2, each
component executes “the entire specification”, in
this case, this one scenario. In the distributed
implementation, when scenarios request or wait for
FlashGreen events, they do not synchronize, but
when they request the four new wave events, they
all synchronize. This results in a partially
synchronized execution, which mimics the
centralized execution but does so with less
intercomponent synchronization.

We compare our target, partially synchronized
execution of a specification created with the
replicateand-project implementation (abbr. R&P),
with a fully synchronized distributed execution (abbr.
FS), where each component executes the same
specification, and they synchronize with every event
selection. The decision in each component whether
to actually turn on its own light following its
respective FlashGreen event is left as a small
implementation detail, i.e., the light-switch
actuation method skips the operation if there is no
direct connection with the device. Both
implementations execute the same one-scenario
specification, replicated over four components. The
total number of events that occurred, all of which
were broadcast to all components, is 44 — the same
for FS and for R&P (five repetitions of two four-event
cycles, and four joint decisions). In the R&P however,
only four of these required synchronization. The
total execution time was the same in both cases,
dominated by the duration of the light flashes, but if
synchronization delay is artificially increased, total
execution time is increased accordingly (e.g., a 100
msec delay purely due to synchronization, in addition
to any ordinary communication delay, would add 400
msec to the duration of each cycle of this single
wave).

We now extend our mini-light-show example
with another wave of flashing lights. We add a
scenario in which, starting with Drone2, each of the
drones briefly flashes a red light, in its turn. This
multi-cycle wave continues uninterrupted and with
no change until the ten cycles of the green wave
terminate. The delay (sleep) before requesting a
FlashRed event is 1000 msec. When multiple events
are requested e.g., both a FlashRed together with
FlashGreen or NW, the ESM selects an event at
random. The forty FlashGreen events in the ten-
cycles determine the beginning and end of the run,
and the number of FlashRed events selected during
this time varies. Since we are presently more
interested in understanding the underlying effects
than in measuring improvements over a large
number of runs, we suffice with this artificial
example. To highlight these effects we show in Table
1 a comparison of the two cases when in both FS and
R&P, 44 FlashGreen events were triggered.

The basic communication delay in these
experiments is set to 50 msec, resulting in 100 msec
delay for broadcasting an event occurence via the
centralizer.

Some interesting explanations and observations
include:

• In FS, at every synhcronization point, both a
FlashRed event, and, either a FlashGreen or NW
events are enabled. This is true regardless of
sleep delays and number of components. Hence
in such runs, on average, half of the events will
be FlashRed. By contrast in R&P, FlashRed is
enabled in a component together with one of the
other two events in a way that depends on
lengths of sleep delays and on the number of
components in the cycle, yielding, in our case
fewer FlashRed events during the run.

• Common to all runs is a 40∗250 msec taken by
the FlashGreen events, plus 4 ∗ 100 msec
minimum number of joint decisions, plus about 3
seconds of overhead (total of 13-14 seconds).

• The 41 seconds duration of R&P is the result of
adding to the above ~13 seconds 28∗1000 msec
FlashRed events.

• The 67 seconds duration of FS is the result of
adding to the above 41 seconds of R&P 17∗1000
msec of additional FlashRed events and 85∗100
msec communication delays due the additional
synchronizations, all of which had to occur during
the same ten cycles of the green wave.

• Even though the total number of events
triggered in R&P is less than in FS, the per-second
event rate is higher.

While the above examples illustrate and quantify the
kind of savings resulting from reduced
synchronization, we must note that the
synchronization delay itself is sometimes not the
main issue. For example, if we were to replace the
FlashGreen event(s) in our design with, e.g., pairs of
TurnGreenLightOn and TurnGreenLightOff events, all
scenarios might have had enough time to
synchronize with each other following the event
TurnGreenLightOn, in parallel to waiting for the time
ticks that would signal the end of the shining of the
light. A relaxed synchronization approach, separating
the scenarios of the two waves into separate
modules within each component, would further
streamline an otherwise fully synchronized
implementation. Nevertheless, the reduced inter-
component synchronization still helps in simplifying
the designs, and in enhancing system robustness. For
example, consider recovering from loss of a drone,
due to battery running out, while “the show must go
on”. It is much easier for all drones to observe and
react to delays in other drones’ behavior, when they
are fully functional as opposed to waiting in a global
synchronization point (even when the latter is
enhanced with timeout facilities as in (Harel and
Katz, 2014)).

6 FORMAL ANALYSIS AND FUTURE

WORK

Previous research on scenario based programming
has shown the great importance of formal methods
and tools in ensuring that the resulting models,
composed of many individual scenarios, perform as
intended as a whole. Past efforts have yielded a large
portfolio of tools for model checking (Harel et al.,
2011a), automatic repair (Harel et al., 2012a; Katz,
2013) and compositional verification (Katz et al.,
2015; Harel et al., 2013b), and have even indicated
that scenariobased programming may be more
amenable to formal analysis than other modeling
approaches (Harel et al., 2015c; Harel et al., 2015b).

Given the above, applying formal analysis in the
distributed case seems even more vital, as
distributed models are inherently more difficult for
humans to comprehend than centralized ones.
Fortunately, Lemma 3.1 enables us to immediately

apply existing tools in our setting. Because the
centralized and distributed models present the same
behavior, it is possible to apply existing approaches
to the centralized version and use them to draw
conclusions regarding the distributed case.

Nonetheless, in a distributed environment there
are some hazards that do not appear in the
fullysynchronized model, and may thus be
overlooked by existing tools:

• Inter-component deadlock: An inter-component
deadlock occurs when a component C has no
enabled local events that it can trigger, and is
thus waiting for certain external event(s).
However due to various reasons, these external
events may never arrive. For example, the reason
might be that another component is actually
waiting for an event that C needs to trigger. Note
that a situation where a component is waiting on
events local to a crashed component is not an
inter-component deadlock, but a soft deadlock,
as restarting the failed component might resolve
the issue.

• External event queue overflow: When a
component repeatedly takes longer to process
external events than it takes the other
components to trigger and broadcast these
events, could result in exceeding the memory
available for the external event queue. An
example of this could be a logger component that
takes too long to post its log entries to a remote
location.

• Latency: Communication delays can cause
poorly-designed systems to exhibit undesired
behavior. As we discussed in Section 3.4, Lemma
3.1 does not hold when latency is too high, and
so such errors cannot be detected by existing
tools.

We are working on extending the presently
available techniques to handle the issues listed
above. For instance, in the latency case an improved
model checking algorithm might simulate a realistic
latency for external event communication,
depending on the communication method used (e.g.,
wired communications over a local network will have
a much lower latency than a satellite connection).
We are also exploring the use of quantitative
approaches to formal verification to attempt and
derive bounds on the maximal size a queue can
reach, given certain constraints on the broadcast and
processing times of system components.

In the context of inter-component deadlock, one
approach for recovering from component failure or
missed messages could be adding state information
to the external events, permitting components that

missed a transition to “fast-forward” to the correct
state in a scenario. Another direction could involve
having multiple instances of critical components, for
redundancy.

As an additional future work direction, we would
like to study approaches to choosing a strict event
separation. While the components are usually
derived manually from physical system
requirements, at times it might be desired to
delineate their boundaries automatically based on
other criteria. One approach is to use clustering
algorithms that take as input a function f that assigns,
for every two events e1,e2 ∈ Σ a correlation value f
(e1,e2) ∈ [−1,+1]. The clustering algorithms then
attempt to partition the events into a strict
separation into k components (with k either known
or unknown beforehand), such that two events are
in the same component if their correlation is high
and are in separate components if their correlation is
low. While this problem is known to be NP-Complete,
it can be approximated up to a logfactor (Bansal et
al., 2004).

7 RELATED WORK

A different framework for the distributed
execution of scenarios is presented in (Greenyer et
al., 2015). Their approach is similar to ours in that the
distributed components can each choose to execute
events that they are responsible for, and selected

events are broadcast to all other components. The
main issues with this implementation relative to R&P
are that (i) it requires that scenarios are written to
not have states where events of multiple

components are enabled, and (ii) it relies on the fact
(enforced by a central coordinator) that all
components observe all event occuurrences in the
same order. By contrast, R&P automatically
coordinates all components when reaching a state
where a joint decision is required, and it allows
components to advance asynchronously when
possible, and in particular, after locally selecting an
event. An advantage, though, of the enforced event
order in (Greenyer et al., 2015) is that it avoids the
risk of sensivity to different event orders. In R&P,
automatic handling of the latter is left for future
research, e.g. using formal methods, as discussed in
Section 3.5.

The research in (Greenyer et al., 2016b) describes
(though without an implementation) a mechanism
for the distributed execution of scenarios with
dynamic role bindings. There, synchronization is
done only among relevant components, as
determined dynamically.

An orthogonal approach proposed for
distributing BP models (Harel et al., 2013a) is by
partitioning the b-threads into modules, where each
module runs its set of b-threads and synchronizes
with other modules upon choosing events that might
matter to other modules. However, in (Harel et al.,
2013a), the component structure is dynamic and is
implied by the specification, in contrast to the
present paper where the component structure is
dictated by the physical structure of the system.

Yet another alternative approach is suggested in
(Harel et al., 2011b), where the distributed system

Table 1: Comparing an execution of a fully synchronized (FS) implementation of a two-scenario specification in a four-component configuration, to an

execution of the partially synchronized replicate-and-project implementation (R&P). See discussion in the Section 5.

Measure: FS R&P

Number of FlashGreen event notification

broadcast

40 40

Number of FlashRed event notification broadcast∗ 45 28

Number of “new wave” event notification

broadcast

4 4

Total number of events 89 72

Total number of Inter-component

synchronizations

89 4

Run duration (in seconds) 67 41

Events per second 1.32 1.75

consists of multiple independent programs, called
behavior nodes (b-nodes), each with its own set of
internal events. Such b-nodes never synchronize
with each other. Similar to our approach the b-nodes
communicate by external events, however those
events require manual translation to and from
internal events. By contrast, in our approach external
events emerge naturally and automatically from
internal events. Furthermore our approach supports
more general designs, inter-component scenarios
and fine-grained synchronizations when scenarios
give rise to inter-component decisions.

There has also been work on synthesizing
scarcely-synchronizing distributed controllers from
scenario-based specifications (Brenner et al., 2015).
Distributed finite automaton controllers can be
synthesized from scenario specifications in a way
that greatly reduces communication overhead
compared to previous approaches, especially
compared to the the broadcasts of events as also
suggested in this work. However, the synthesis
procedure is computationally complex and does not
scale well as specification and system size increase.
In (Fahland and Kantor, 2013), the authors study a
similar problem and present an approach for
synthesizing executable implementations from
specifications given in a distributed variant of LSC,
termed dLSC.

Outside the scope of scenario-based modeling,
the trade-off between performance optimization
and communication minimization in parallel and
distributed settings has been studied extensively.
These two conflicting goals are discussed in (Cheng
and Robertazii, 1988; Yook et al., 2002). In (van
Gemund, 1997) the author suggests imposing certain
limitations on the communication between the
components, thus allowing for execution-time
optimization to be performed during compilation.

8 CONCLUSION

We presented an approach towards transforming a
scenario-based model so that it can be executed in a
distributed configuration, by creating
componentspecific variations, or projections, based
on each component’s scope of responsibility. This
replicate-andproject approach allows us to distribute
any centralized model based on specifications which
can be derived from practical physical requirements,
such as number of processors and the specific

hardware controlled by each of them. We have
shown that the resulting distributed models behave
similarly to the centralized model from which they
originated. This important property allows us to carry
out most of the modeling work, including testing and
analysis, in the centralized setting, which is easier to
modelcheck and reason about. The projected models
retain the naturalness and incrementality traits of
behavioral programming. In their avoidance of
excessive synchronization, they improve robustness
and the ability to model systems with multiple time
scales. To the list of future research avenues which
this direction opens, one may add the possibility that
replicate-and-project approaches may be applicable
in software development contexts other than
scenario-based / behavioral programming.

ACKNOWLEDGMENTS

This work was supported in part by grants to DH from
the Israel Science Foundation, the Estate of Emile
Mimran, and the William Sussman Professorial Chair
of Mathematics at the Weizmann Institute.

REFERENCES

Alexandron, G., Armoni, M., Gordon, M., and Harel, D.
(2014). Scenario-Based Programming: Reducing the
Cognitive Load, Fostering Abstract Thinking. In Proc.
36th Int. Conf. on Software Engineering (ICSE), pages
311–320.

Bansal, N., Blum, A., and Chawla, S. (2004). Correlation
Clustering. Machine Learning, 56(1–3):89–113.

Brenner, C., Greenyer, J., and Schafer, W. (2015). On-the-¨
Fly Synthesis of Scarcely Synchronizing Distributed
Controllers from Scenario-Based Specifications. In
Proc. 18th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE), pages 51–65.

Cheng, Y. and Robertazii, T. (1988). Distributed
Computation with Communication Delay
[Distributed Intelligent Sensor Networks]. IEEE
Transactions on Aerospace and Electronic Systems,
24(6):700–712.

Damm, W. and Harel, D. (2001). LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80.

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.
(2003). The Many Faces of Publish/Subscribe. ACM
Computing Surveys (CSUR), 35(2):114–131.

Fahland, D. and Kantor, A. (2013). Synthesizing
Decentralized Components from a Variant of Live

Sequence Charts. In Proc. 1st Int. Conf. on Model-
Driven Engineering and Software Development
(MODELSWARD), pages 25–38.

Ghosh, S. and Gupta, A. (1996). An Exercise in
Faultcontainment: Self-stabilizing Leader Election.
Inf. Process. Lett., 59(5):281–288.

Gordon, M., Marron, A., and Meerbaum-Salant, O. (2012).
Spaghetti for the Main Course? Observations on the
Naturalness of Scenario-Based Programming. In Proc.
17th Conf. on Innovation and Technology in
Computer Science Education (ITICSE), pages 198–
203.

Greenyer, J., Gritzner, D., Gutjahr, T., Duente, T., Dulle,
S., Deppe, F.-D., Glade, N., Hilbich, M., Koenig, F.,
Luennemann, J., Prenner, N., Raetz, K., Schnelle, T.,
Singer, M., Tempelmeier, N., and Voges, R. (2015).
Scenarios@run.time — Distributed Execution of
Specifications on IoT-Connected Robots. In Proc. 10th
Int. Workshop on Models@Run.Time (MRT), pages
71–80.

Greenyer, J., Gritzner, D., Katz, G., and Marron, A. (2016a).
Scenario-Based Modeling and Synthesis for
Reactive Systems with Dynamic System Structure in
ScenarioTools. In Proc. 19th Int. Conf. on Model
Driven Engineering Languages and Systems
(MODELS), pages 16–32.

Greenyer, J., Gritzner, D., Katz, G., Marron, A., Glade, N.,
Gutjahr, T., and Konig, F. (2016b).¨ Distributed
Execution of Scenario-based Specifications of
Structurally Dynamic Cyber-Physical Systems. In Proc.
3rd Int. Conf. on System-Integrated Intelligence: New
Challenges for Product and Production Engineering
(SYSINT), pages 552–559.

Harel, D., Kantor, A., and Katz, G. (2013a). Relaxing
Synchronization Constraints in Behavioral Programs.
In Proc. 19th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), pages
355– 372.

Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L., and
Weiss, G. (2013b). On Composing and Proving the
Correctness of Reactive Behavior. In Proc. 13th
Int. Conf. on Embedded Software (EMSOFT), pages 1–
10.

Harel, D., Kantor, A., Katz, G., Marron, A., Weiss, G., and
Wiener, G. (2015a). Towards Behavioral
Programming in Distributed Architectures. Science of
Computer Programming, 98(2):233–267.

Harel, D. and Katz, G. (2014). Scaling-Up Behavioral
Programming: Steps from Basic Principles to
Application Architectures. In Proc. 4th Int. Workshop
on Programming based on Actors, Agents, and
Decentralized Control (AGERE!), pages 95–108.

Harel, D., Katz, G., Lampert, R., Marron, A., and Weiss, G.
(2015b). On the Succinctness of Idioms for
Concurrent Programming. In Proc. 26th Int. Conf. on
Concurrency Theory (CONCUR), pages 85–99.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016). An
Initial Wise Development Environment for Behavioral
Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development
(MODELSWARD), pages 600–612.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2012a). Non-
Intrusive Repair of Reactive Programs. In Proc. 17th
IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), pages 3–12.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2015c). The
Effect of Concurrent Programming Idioms on
Verification. In Proc. 3rd Int. Conf. on Model-Driven
Engineering and Software Development
(MODELSWARD), pages 363–369.

Harel, D., Kugler, H., Marelly, R., and Pnueli, A. (2002).
Smart Play-Out of Behavioral Requirements. In Proc.
4th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), pages 378–398.

Harel, D., Lampert, R., Marron, A., and Weiss, G. (2011a).
Model-Checking Behavioral Programs. In Proc. 11th
Int. Conf. on Embedded Software (EMSOFT), pages
279–288.

Harel, D. and Marelly, R. (2003a). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

Harel, D. and Marelly, R. (2003b). Specifying and Executing
Behavioral Requirements: The Play In/Play-Out
Approach. Software and System Modeling (SoSyM),
2:82–107.

Harel, D., Marron, A., and Weiss, G. (2012b). Behavioral
Programming. Communications of the ACM,
55(7):90–100.

Harel, D., Marron, A., Weiss, G., and Wiener, G. (2011b).
Behavioral Programming, Decentralized Control, and
Multiple Time Scales. In Proc. 1st SPLASH Workshop
on Programming Systems, Languages, and
Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171–182.

Harel, D. and Segall, I. (2011). Synthesis from live sequence
chart specifications. Computer System Sciences. To
appear.

Katz, G. (2013). On Module-Based Abstraction and Repair
of Behavioral Programs. In Proc. 19th Int. Conf. on
Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518–535.

Katz, G., Barrett, C., and Harel, D. (2015). Theory-Aided
Model Checking of Concurrent Transition Systems. In
Proc. 15th Int. Conf. on Formal Methods in
ComputerAided Design (FMCAD), pages 81–88.

Miller, C. and Poellabauer, C. (2009). A Decentralized
Approach to Minimum-Energy Broadcasting in Static
Ad Hoc Networks. In Proc. 8th Int. Conf. on Ad-Hoc,
Mobile and Wireless Networks (ADHOC-NOW), pages
298–311.

Ramadge, P. and Wonham, W. (1987). Supervisory Control
of a Class of Discrete Event Processes. SIAM J. on
Control and Optimization, 25(1):206–230.

Stefanescu, A., Esparza, J., and Muscholl, A. (2003).
Synthesis of Distributed Algorithms Using
Asynchronous Automata. In Proc. 14th Int. Conf. on
Concurrency Theory (CONCUR), pages 27–41.

van Gemund, A. (1997). The Importance of Synchronization
Structure in Parallel Program Optimization. In Proc.
11th Int. Conf. on Supercomputing (ICS), pages 164–
171.

Yook, J., Tilbury, D., and Soparkar, N. (2002). Trading
Computation for Bandwidth: Reducing
Communication in Distributed Control Systems Using
State Estimators. IEEE Transactions on Control
Systems Technology, 10(4):503–518.

A Appendix: Proof for Lemma 3.1

Here we discuss the execution semantics of our
distributed model, show that they produce runs that
are compatible with the BP semantics, and prove an
important property: assuming communication is
instantaneous, the distributed system behaves
identically to the undistributed one.

Definition A.1. A distributed model produced from a
behavioral model M, with respect to a strict event

separation, S = {C1,...,Ck}, denoted as D(M,S), is

defined to be the set of projections of M along the
components of the event separation:

D(M) = {project(M,C1),...,project(M,Ck)}.

Executing a distributed model means executing the
component models (i.e., the projections) according
to the operational semantics defined in Section 3.3.

Next we formally define the global state (the cut)
of a behavioral model that is being executed:

Definition A.2. Given a behavioral model M =
{BT1,...,BTn}, the program cut r ∈ Q1×···×Qn is defined
to be the current model state: r = hq1,...,qni where qi

is the current state of b-thread BTi.

For the remainder of this section we assume that
the inter-component communication latency is
negligible, and that external-event processing is
instantaneous. This allows us to assume that
selected events can be ordered serially. Given these
conditions, we can make the following observation:

Claim A.1. In a distributed execution of D(M,S), the
cuts of all component models are identical at every
point in time.

Proof. The proof is by induction. For the basis of the

induction, observe that in the execution of D(M,S) all

components begin at the same initial program cut

. Next, for the inductive step, suppose that
all components are currently in cut hq1,...,qni. Once
any component selects an events e ∈ Σ, that event is
instantly broadcasted and processed by the rest of
the components. Each projected b-thread BTj

i in
component Cj transitions to state δi(qi,e). By
definition of the projection process, the δi functions
are identical across components, and hence all
projections of each thread proceed to the same

successor state. The claim follows.

As the component programs cuts are identical
across all components, we can extend the definition
and refer to program cut of a distributed system as
the program cut of any of the components.

Definition A.3. An enabled event at some program
cut of behavioral model M is an event that is
requested by some b-thread and is not blocked by
any of the bthreads of M. Analogically, for a

distributed system D(M) an enabled event is an

event requested by some b-thread of some
component, and not blocked by any b-thread of any
component.

Definition A.4. Let ∆(r,e) denote the program cut
transition function, where r is a program cut and e ∈
Σ is an event. ∆ is fully defined by the bthreads state
transition function δi as follows: for r =
hq1,...,qni,∆(r,e) = hδi(q1,e),...,δi(qn,e)i.

We can now define what the formal language
generated by a behavioral model is and prove that
the languages of the undistributed model and the
distributed one are the same.

Definition A.5. The language L of a behavioral model
M denoted L(M) is a set of words defined over the
alphabet Σ. A word w = e1e2...el ... is in L(M) if its
letters constitute a legal run of M; i.e., if we begin in
the initial cut and apply ∆ according to the sequence
of events in w, the next event is always enabled in
the current cut. The language of the distributed

model D(M,S) is defined similarly.

The equality between L(M) and L(D(M,S)) will

follow from the following claim:

Claim A.2. At any given program cut r = hq1,...,qni, the

sets of all enabled events of M and of D(M,S) are

equal.

Proof. By definition, the set of enabled events of M is

(S
i Ri(qi)) \ (S

i Bi(qi)). In the distributed model

D(M,S), as components cannot block external

events, the set of enabled events is the union of sets
of enabled

events of
each

component:

[

k

[

k

!

which is identical to the set of enabled events of M.

Claim A.3. The language of a behavioral model L(M)
is equal to the language of its distributed version

L(D(M,S)).

Proof. As the thread transition functions are
unchanged by the projection, it immediately follows
that, for any cut r and event e, ∆(r,e) is equal in M

and in D(M,S). Furthermore we saw in claim A.2 that

the enabled events of M and D(M,S) are equal at any

given program cut. Finally, as the initial cuts for M

and D(M,S) are identical, it follows by induction that

both models generate the same language.

Thus, when ignoring communication latency, the
distributed system operates indistinguishably from
the original undistributed one. This also implies that
the distributed model behaves correctly, i.e.,
produces executions that are allowed under BP
semantics.

